• Title/Summary/Keyword: graph of a matrix

Search Result 203, Processing Time 0.064 seconds

Embedding between a Macro-Star Graph and a Matrix Star Graph (매크로-스타 그래프와 행렬 스타 그래프 사이의 임베딩)

  • Lee, Hyeong-Ok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.571-579
    • /
    • 1999
  • A Macro-Star graph which has a star graph as a basic module has node symmetry, maximum fault tolerance, and hierarchical decomposition property. And, it is an interconnection network which improves a network cost against a star graph. A matrix star graph also has such good properties of a Macro-Star graph and is an interconnection network which has a lower network cost than a Maco-Star graph. In this paper, we propose a method to embed between a Macro-Star graph and a matrix star graph. We show that a Macro-Star graph MS(k, n) can be embedded into a matrix star graph MS\ulcorner with dilation 2. In addition, we show that a matrix star graph MS\ulcorner can be embedded into a Macro-Star graph MS(k,n+1) with dilation 4 and average dilation 3 or less as well. This result means that several algorithms developed in a star graph can be simulated in a matrix star graph with constant cost.

  • PDF

LAPLACIAN SPECTRA OF GRAPH BUNDLES

  • Kim, Ju-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1159-1174
    • /
    • 1996
  • The spectrum of the Laplacian matrix of a graph gives an information of the structure of the graph. For example, the product of non-zero eigenvalues of the characteristic polynomial of the Laplacian matrix of a graph with n vertices is n times of the number of spanning trees of that graph. The characteristic polynomial of the Laplacian matrix of a graph tells us the number of spanning trees and the connectivity of given graph. in this paper, we compute the characteristic polynomial of the Laplacian matrix of a graph bundle when its voltage lie in an abelian subgroup of the full automorphism group of the fibre; in particular, the automorphism group of the fibre is abelian. Also we study a relation between the characteristic polynomial of the Laplacian matrix of a graph G and that of the Laplacian matrix of a graph bundle over G. Some applications are also discussed.

  • PDF

An Algorithm for One-to-One Mapping Matrix-star Graph into Transposition Graph (행렬-스타 그래프를 전위 그래프에 일-대-일 사상하는 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1110-1115
    • /
    • 2014
  • The matrix-star and the transposition graphs are considered as star graph variants that have various merits in graph theory such as node symmetry, fault tolerance, recursive scalability, etc. This paper describes an one-to-one mapping algorithm from a matrix-star graph to a transposition graph using adjacent properties in graph theory. The result show that a matrix-star graph $MS_{2,n}$ can be embedded in a transposition graph $T_{2n}$ with dilation n or less and average dilation 2 or less.

Matrix Hypercube Graphs : A New Interconnection Network for Parallel Computer (행렬 하이퍼큐브 그래프 : 병렬 컴퓨터를 위한 새로운 상호 연결망)

  • 최선아;이형옥임형석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.293-296
    • /
    • 1998
  • In this paper, we propose a matrix hypercube graph as a new topology for parallel computer and analyze its characteristics of the network parameters, such as degree, routing and diameter. N-dimensional matrix hypercube graph MH(2,n) contains 22n vertices and has relatively lower degree and smaller diameter than well-known hypercube graph. The matrix hypercube graph MH(2,n) and the hypercube graph Q2n have the same number of vertices. In terms of the network cost, defined as the product of the degree and diameter, the former has n2 while the latter has 4n2. In other words, it means that matrix hypercube graph MH(2,n) is better than hypercube graph Q2n with respect to the network cost.

  • PDF

GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS

  • Afkhami, Mojgan;Hashemifar, Seyed Hosein;Khashyarmanesh, Kazem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1017-1031
    • /
    • 2016
  • Let R be a commutative ring with the non-zero identity and n be a natural number. ${\Gamma}^n_R$ is a simple graph with $R^n{\setminus}\{0\}$ as the vertex set and two distinct vertices X and Y in $R^n$ are adjacent if and only if there exists an $n{\times}n$ lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^t=Y^t$ or $AY^t=X^t$, where, for a matrix B, $B^t$ is the matrix transpose of B. ${\Gamma}^n_R$ is a generalization of Cayley graph. Let $T_n(R)$ denote the $n{\times}n$ upper triangular matrix ring over R. In this paper, for an arbitrary ring R, we investigate the properties of the graph ${\Gamma}^n_{T_n(R)}$.

RECOGNITION OF STRONGLY CONNECTED COMPONENTS BY THE LOCATION OF NONZERO ELEMENTS OCCURRING IN C(G) = (D - A(G))-1

  • Kim, Koon-Chan;Kang, Young-Yug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.125-135
    • /
    • 2004
  • One of the intriguing and fundamental algorithmic graph problems is the computation of the strongly connected components of a directed graph G. In this paper we first introduce a simple procedure for determining the location of the nonzero elements occurring in $B^{-1}$ without fully inverting B, where EB\;{\equiv}\;(b_{ij)\;and\;B^T$ are diagonally dominant matrices with $b_{ii}\;>\;0$ for all i and $b_{ij}\;{\leq}\;0$, for $i\;{\neq}\;j$, and then, as an application, show that all of the strongly connected components of a directed graph G can be recognized by the location of the nonzero elements occurring in the matrix $C(G)\;=\;(D\;-\;A(G))^{-1}$. Here A(G) is an adjacency matrix of G and D is an arbitrary scalar matrix such that (D - A(G)) becomes a diagonally dominant matrix.

Matrix Star Graphs: A New Interconnection Networks Improving the Network Cost of Star Graphs (행렬 스타 그래프: 스타 그래프의 망 비용을 개선한 새로운 상호 연결망)

  • 이형옥;최정임형석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.467-470
    • /
    • 1998
  • In this paper, we propose a matrix star graph which improves the network cost of the well-known star grah as an interconnection network. We analyze its characteristics in terms of the network parameters, such as degree, scalability, routing, and diameter. The proposed matrix star graph MS2,n has the half degrees of a star graph S2n with the same number of nodes and is an interconnection network with the properties of node symmetry, maximum fault tolerance, and recursive structure. In network cost, a matrix star graph MS2,n and a star graph S2n are about 3.5n2 and 6n2 respectively which means that the former has a better value by a certain constant than the latter has.

  • PDF

A Historical Background of Graph Theory and the Computer Representation (그래프 이론의 역사적 배경과 그 컴퓨터 표현)

  • Kim Hwa-jun;Han Su-young
    • Journal for History of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.103-110
    • /
    • 2005
  • This paper is aimed at studying a historical background of graph theory and we deal with the computer representation of graph through a simple example. Graph is represented by adjacency matrix, edge table, adjacency lists and we study the matrix representation by Euler circuit. The effect of the matrix representation by Euler circuit economize the storage capacity of computer. The economy of a storage capacity has meaning on a mobile system.

  • PDF

DIRECTED STRONGLY REGULAR GRAPHS AND THEIR CODES

  • Alahmadi, Adel;Alkenani, Ahmad;Kim, Jon-Lark;Shi, Minjia;Sole, Patrick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • The rank over a finite field of the adjacency matrix of a directed strongly regular graph is studied, with some applications to the construction of linear codes. Three techniques are used: code orthogonality, adjacency matrix determinant, and adjacency matrix spectrum.