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LAPLACIAN SPECTRA OF GRAPH BUNDLES

JUu Young KiM

ABSTRACT. The spectrum of the Laplacian matrix of a graph gives an
information of the structure of the graph. For example, the product of
non-zero eigenvalues of the characteristic polynoraial of the Laplacian
matrix of a graph with n vertices is n times of the number of spanning
trees of that graph. The characteristic polynomial of the Laplacian ma-
trix of a graph tells us the number of spanning trees and the connectivity
of given graph. In this paper, we compute the characteristic polynomial
of the Laplacian matrix of a graph bundle when its voltages lie in an
abelian subgroup of the full automorphism group of the fibre; in partic-
ular, the automorphism group of the fibre is abelian. Also we study a
relation between the characteristic polynomial of the Laplacian matrix
of a graph GG and that of the Laplacian matrix of a graph bundle over
G. Some applications are also discussed.

1. Introduction

Let G be a finite simple connected graph wth vertex set V(G) =
{ur,uz,--- ,un} and edge set E(G). We denote the set of vertices ad-
Jacent to v € V(G) by N(v) and call it the neighborhood of a vertex v.
Denote the degree of a vertex u by d(u). Let

D(G) = Diag[d(ul)vd(uz)v T w‘l(un)]

be the diagonal matrix of vertex degrees. The Laplacian matrix of G is
C(G) = D(G)— A(G), where A(G) is the (0,1)-adjacency matrix of G.
The characteristic polynomial of a graph G is the characteristic polyno-
mial det(A] — A(G)) of A(G), denoted by ®(G;\). A zero of &(G: )
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is called an eigenvalue of G. We denote the characteristic polynomial
det(Al — C(G)) of the Laplacian matrix of G by ¥(G; ). By |X|, we
denote the cardinality of a finite set X Convert (; to a digraph G by
replacing each edge e of G with a pair of oppositely directed edges, say
e’ and e¢~. We denote the set of directed edges of G by E(a) Note
that the adjacency matrix of the graph G is the same as that of the
digraph G. Now, we introduce the notion of a graph bundle. By e~!
we mean the reverse edge to an edge ¢ € E(a) Denote the directed
edge e of G by wv if the initial and the terminal vertices of ¢ are u and
v, respectively. For a finite group I', a I-voltage ussignment of G is a
function ¢ : E(a‘) — T such that ¢(e™!) = @(e)" ! forall e € E(?j)
We denote the set of all I-voltage assignments of G by C'(G;T'). Let
F' be another finite graph and let ¢ € C'(G; Aut/F)), where Aut(F)
denotes the group of all graph automorphisms of F. Now, we construct
a new graph G x? F as follows: V(G x® F) = V(G') x V(F). Two ver-
tices (uy,v;) and (uq, vy) are adjacent in G x® F if either uqu, € E(G)
and vy = ¢(ujuz)vy or uy = ug and vjvy € E(F). We call G x¢ F
the F-bundle over G associated with ¢ and the first coordinate projec-
tion p? : G x® F — G the bundle projection . We also call G and F
the base and the fibre of the bundle G < F, respectively. Moreover, if
F =K, the complement of the complete graph K, on n vertices, then
an F-bundle over G is just an n-fold covering grapl of G. If ¢(e) is the
identity of Aut(F) for all e € E(—C—?)) then G x? F is just the cartesian
product of G and F.

2. Laplacian matrices of graph bundles

Let F be a finite graph and let ¢ be an Aut(F)-voltage assignment of
G. For each v € Aut(F), let _C?(cpﬁ) denote the spanning subgraph of the
digraph G whose directed edge set is ¢~ 1(7), so that the digraph G is
the edge-disjoint union of spanning subgraphs 8(,15‘7), v € Aut(F'). Let
V(G) = {u1,uz,--- ,un} and V(F) = {vy,vy, - ,v;m}. We define an
order relation < on V(G x¢ F) as follows: for any two vertices (u;, vi)
and (uj,ve) of G x? F, (u;,vx) < (u;,ve) if and only if either k < ¢
or k = ¢ and ¢ < j. Let P(y) denote the m x m permutation matrix
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associated with v € Aut(F) corresponding to the action of Aut(F') on
V(F'). Here, the tensor product A® B of matrices A and B is considered
as the matrix B having the element b;; replaced by the matrix Ab;;.

It is known [6] that the adjacency matrix of a graph bundle G x¢ F
is

A(G ><¢F ( Z A T ($,7) ) + [|v((;)| ® A(F),

cAut(F)

where P(7v) is the permutation matrix associated with ¥ corresponding
to the action of Aut(F) on V(F'), and Ijy(g) is the identity matrix of
order |V(G)|.

To find the diagonal matrix D(G x ®F) of vertex degrees, we recall that
two vertices (u;,vg) and (u;,v,) are adjacent in G x® F if either uu; €
E(E') and v = ¢(uiu;)vk or u; = uj and vive € E(F). Hence the degree
of (u;,vk) is the sum of the degree of u; in V(G) and the degree of vy in
V(F). 1t implies that the degree of (u;,vg)is (nik—1)+¢,n(k—1)41)-
entry of

D(G)® I|V(F)| + I|V(G)| ® D(F).

That is,
D(G x ® F)=D(G)® I|V(F)| + I|V(G)| ® D(F).

Now, the Laplacian matrix C(G x? F) of the bundle G x® F is given as
follows.

D(G x® F)— A(G x® F)
= [D(G) & Lyv(m) + Liv(e)) ® D(F)]

- ( > A(@<¢m)®P(v>)+I|V(G)@A(F)

yEAut(F)
=D(G) ® Ljv(p)

- ( Z A(6(¢77))®P(7))+I|V(C)®(A(F)_D(F))

YEAut(F)
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ZD(G) ®I|V(F)|

- Z A(G (5)) @ P(Y) | + Livie) @ (-C(F))
YEAut(F)

We summarize our discussions in the following theorem.

‘THEOREM 1. The Laplacian matrix C(G x? F) of the graph bundle
G x? F is

D(Gx*F)~AGx*F)=D(@)@Lviry— Y. AlG) @ Ply)

YEAut{ F')
+ Ijv(c) @ C(F).

If the fibre F of the graph bundle G x¢ F is i, then G x¢ F is an
n-fold covering graph of G and the adjacency matrix A(F) is the zero
matrix. Hence, we get the following corollary.

CoROLLARY 1. The Laplacian matrix C(G x® K,) of an n-fold cov-
ering G x* K,, of G is

V& In= ) AlGom)® P(y).

YESh

Since the cartesian product G x F of two graphs G and F is just the
F-bundle over G associated with the trivial voltage assignment ¢, i.e.,
¢(e) = the identity for all ¢ € E(G), and A(G) = A(G), we get the
following corollary.

COROLLARY 2. The Laplacian matrix C(G x F) of the cartesian prod-
uct G x F of two graphs G and F is

C(G) & Ly + Tive) & C(F).

From now on, we consider a voltage assignment ¢ of G whose image
lies in an abelian subgroup I' of Aut(F). Since the permutation ma-
trices P(v),7 € I' and the Laplacian matrix C(F) of the fibre are all
diagonalizable and commute with each other, they are simultaneously
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diagonalizable. In other words, there exists an invertible matrix Mr
such that MrP(v)My ! and MrC(F)My " are diagonal matrices for all
veTl.

For convenience, we write

]\JI‘P(’}’)]\JI«—l = Diag [)\(%1), e ”\(W,IV(F)I)]
for v € ', and
MI‘C(F)MI:I = Dlag [A(F,l)’ L 7A(F,]V(F)[):| .

That is, A¢y,1), 3 A(y,|v(F))) are the eigenvalues of the permutation ma-
trix P(7y) , and A(z1), -+ , A(p,|v(r))) are the eigenvalues of the Laplacian
matrix C(F). Then, Theorem 1 gives

(Ijv(e) ® Mr)C(G x *F)(Livcy © Mr)™"

VP
= P (PG~ | D A0 AGpm)+ Amalivio
=1 ~el

Now, we have

THEOREM 2. Let.T be an abelian subgroup of Aut(F'). Then, for any
T-voltage assignment ¢ of G , the Laplacian matriz of the graph bundle
G x? F is similar to

V(P
D < DG) = | DA AlGg ) + M mplvia
=1 ~eTl

COROLLARY 3. Let T be an abelian subgroup of the symmetric group
Sy. Then, for any I'-voltage assignment ¢ of G, the Laplacian matrix of
an n-fold covering G x® K, of G is similar to

n

P DG - AanAGs,n)

=1 ~vel
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COROLLARY 4. The Laplacian matrix of the cartesian product G x F
of two graphs G and F is similar to

m

@ {C(G)+ NI}

=1

3. Regular coverings

A covering p : G — G is said to be regular if there is subgroup A of
the automorphism group Aut(G) of G acting freely on G such that G /A
1s isomorphic to G.

The graph G x4 T' derived from a voltage assignraent ¢ : E(a) - T
has as its vertex set V(G) x T' and as its edge set E(G) x T, so that an
edge of G x4 I joins a vertex (u,7) to (v, ¢(e)y) for e = uv € E(a)
and v € I'. A vertex (u,7) is denoted by u,, and an edge (e,y) by
ey. The voltage group I' acts on G x4 T as follows: for every v €T,
let @, :G x4 T — G x4 denote the graph automorphism defined by
®.,(vy) = vy -1 on vertices and ®.(ey) = ey 4-1 on edges. Then the
natural map G x4 I' = (G x4 T')/T & G is a regular |T|-fold covering
projection.

From now on, we assume that the voltage group [ is a finite abelian
group. Then I' is isomorphic to a product of cyclic groups. Say, I' =
Ly XLipy X -+ X Ly,. Forala =1,--- £, let p, denote a generator of
the cyclic group Z,, so that Z,, = {p2,pl,--: ,pha=1}

We define an order relation < on Z,, by pt < p™ if and only if
¢ < m. This order relation gives the relation as in Section 2 on I'. For
any v € I, let P(y) be the permutation matrix associated with v under
the above order. We note that the set of vertices of G X ¢ I' also has the
corresponding order relation if an order relation on V (G) is given.

Chae and Lee computed the adjacency matrix of the covering graph
G x4 T as follows [3]:

ACxeD) = 3 A(a(ab,(pf%--,pf‘))) @ Ports--,pf'),
(’k],"‘,kl)
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where P(pf‘, o ,pzf‘) is the permutation matrix associated with (p™
-, p§Y). Moreover, the adjacency matrix A(G x4 I') is similar to

Z A (aw,(,,p,...,,,;z))) ® (D(m)’“ ®-® D(p()’"),
(ki ke)
where D(p,) is the ny X n, matrix

1
Qo 0

Cna—l
[2 4

and(a_exp z)for1<a<€

Let C denote the field of complex numbers, I = Z,, x --- x Z,,, and
let ¢ be a I'-voltage assignment of G. For each (sq,---,s¢) € ' with
0 <54 <ngandl < a </, we define a weight function w,, ... 4,)(®) :

E(G) - Cby

oy, o) (9)(E) = H<<’° for g(e) = [ obe.

Then, we have
— ky "
2 A(G (b prey))B(D(p1)™ @ - @ D(pe)™)

k)

—}
= ) fl(Gu(‘l,,.,,”)(‘p))'

(81, ,8¢)

To find the diagonal matrix D(G x4 I') of vertex degrees, we recall that
an edge of G x4 T joins a vertex (u,v) to (v, ¢(e)v), for e = uv € E(G)
and v € I". It implies that D(G x4 T') = D(G) & I)r|. Hence, we get the
following
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THEROEM 3. LetT' =Z,, X Zp, X -+- X Ly, and let ¢ be a ['-voltage
assignment of G. Then, the Laplacian matrix C(G x4 ') of a regular
covering graph G x4 T is

D(G) @ Ir) - Z A (¢’,(Pf1v"',ﬂfl)))®P(pf1’“' vpfl)'

Moreover, it is similar to

& {D(G)-AG

(91,7 ,8¢)

u}(,l_.,v’,l)(tﬁ),J}'

4. Computational formulas

Let C denote the field of complex numbers, and let D be a digraph.
A vertez-and-edge weighted digraph (in short, VEW digraph) is a pair
D, = (D,w), where w : E(D)U V(D) — C is a function on the set
E(D) of edges in D and the set V(D) of vertices in D. We call D the
underlying digraph of D, and w the vertez-and-edge weight function on
D.,. Moreover, if w(e™!) = w(e), the complex conjugate of w(e), for each
edge e € E(D), we say w is a symmetric vertez-and-edge weight function
and D, a symmetrically vertez-and-edge weighted digraph.

Given any VEW digraph D, the adjacency matrix A(D,) = (a;;) of
D, is the square matrix of order |V(D)| defined by

wlvi) if =7,
Ay = u)(v,-vj) Zf Yy € E(D
0 otherwise.

The characteristic polynomial of VEW digraph D, is that of its adja-
cency matrix A(D,). Now, for any I'-voltage assignment ¢ of G, with

notations as in Section 2, let wi(¢): E(a) U V(—C—?’) -+ C be the function
defined by wi(#)(e) = —A(g(e) i) for e € E(G) and wi¢)(v;) = d(vj), the
degree of v; in G, so the adjacency matrix of a VEW digraph (é, wi(@))

is the matrix
D(G) = Y M3 A(G (o).
~er
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for each ¢« = 1,2,--- | |[V(F)|. Then, we can obtain the characteristic
polynomial of the Laplacian matrix of the graph bundle G x¢ F from
Theorem 2 as follows.

THEOREM 4. Let I' be an abelian subgroup of Aut(F') and let ¢ be
a I'-voltage assignment of G. Then the characteristic polynomial of the
Laplacian matriz C(G x® F) of G x?® F is

|V(F))
UG < FA) = [ @(Guorid —Awmn).

1=1

COROLLARY 5. (1) If T be an abelran subgroup of S, and ¢ a T'-
voltage assignment OJE then the characteristic polynomial of the Lapla-
cian matriz C(G x® K,,) of an n-fold covering graph of G is

V(G xR N) = [[ (G o V).
=1

(2) The characteristic polynomial of the Laplacian matriz C(G x F') of
the cartesian product G x F of two graphs G and F 13

|V(F)|
UG xF:N) = [ wGA- iy

=1

Corollary 5.(2) shows that the Laplacian eigenvalues of the carte-
sian product G x F of graphs G and F are equal to all the possi-
ble sums of eigenvalues of two factors: (g ;) + A(ri), where A\ ;).
J =12, |V(G)] and A(p,), ¢ = 1,2,--- ,|V(F)|, are the eigenvalues
of C(G) and C(F'), respectively.

Now, we need to calculate the characteristic polynomials ‘I’(qu.»(m? A)
of a VEW digraph @ui(¢) fori =1,2,--- ,|V(F)|.

An undirected simple graph S is called a basic figure if each of its
components is either K; or K; or a cycle C,,,(1n > 3). We denote by
B;(G) the set of all subgraphs of G which are basic figures with j vertices.

Then, the characteristic polynomial of a VEW digraph a)w.-(cb) is given
as follows:
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Let I' be an abelian subgroup of Aut(F ). Then, for any T'-voltage
assignment ¢ of GG, we have

V(G)
B(F (e A) = AV@I L §° ( DD x T wilé)w)
=1 S€B,(G) w€lo(8)

< T wehten)x [T @€ Hwdonc) =) AV @I,

€€k (5) CeC(S)

In this equation, (S) denotes the number of components of S, A" 2(.5)
the subgraph of S consisting of all components isomorphic to K,, C (S)
the set all cycle Crn(m > 3) in S, and I,(S) does the set of all isolated
vertices in S. If a component of S in G is a cycle C, C* and C~ are two
linear directed cycle and w;(¢)(C*) = [leepctywte)

Now, we calculate the characteristic polynomial of a regular cover-
ing. For any I'-voltage assignment ¢ of G, with notations as in Section
3, let wiy,,... o) (@) : E(a) U V(?j) — C be the function defined by

st (0)(€) =~ [Tomy (Gh°)™ for @le) = [[hey phe.c € E(G) and
w(sl, y,l)(fﬁ)(vJ) = d(v;), the degree of v; in G.

Then, the following comes from Theorem 3.

THEOREM 5.

U(G %y T M) = B(C(G x4 T); A) = H oo (Cop @i V)

Now, we need to calculate the characteristic polynomial (I)(-G-rw(”"_
(¢); A) of a VEW digraph E’me o0 (#)
Finally, we compute the characteristic polynomial CD(E;W(”, e (9D A)

ieg)

of a VEW digraph E’w(”'_” oy (9) for a pseudograph G as a generaliza-
tion.

In an undirected pseudograph, two elementary configurations S, and
Sz are equivalent if the identity map of vertex set V(G) induces an
isomorphism between S and S;. We denote the set of equivalence classes
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of B;(G) by [Bj(G)] for j = 1,---,|V(G)|. Let [S] be an element of
[B;(G)]. Then [S] is an equivalence class of K, or K3 or cycles. Let
E(K3[S]) be the equivalence classes of the copies of K, and E(C[S])
the equivalence classes of the cycles in [S]. Note every copy of K, in

G induces two directed edges in_a, say et and e~, and every loop is a
cycle of length 1. Then we can get the following theorem.

THEOREM 6. Let I' be a finite abelian group and let ¢ be a ['-voltage
assignment of G. Let w be one of wy,, ... 4,)(¢). Then, for each [S] €
[B;(G)], the contribution of [S] in the coefficient of AIV(G)I~J of@(aw; A)

s

(=0 T ww  J] (Zw(eﬂ) (2:(w(e+))—l>2lE(C[5])l

u€ly(S) [eJ€ E(K2[5]) \e€le] egle]
< J1 ( > Re(w(C* ,.)),
[CleE(C[S]) \CEel[C)

where Re(w(C™)) is the real part of [[cc+ w(e) and S is a representative
of [S]

5. Applications

Let n be a positive integer. The wrapped butterfly WB,, of order n
has vertex set

V(WBn) = Zn X Zzn,

and each vertex
< Bofr - BeoraBesr B >
is adjacent to each of the vertices

< ¥ +1 (mod n),ﬁnﬂl s ,B[_lwﬂ[_}.] ces ,Bn—l >
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for w € Z,. For example, W B3 can be drawn as follows:

=

kf, — ,':fgjj
FIGURE 1. The wrapped butterfly W B;.

Let WG, be the pseudograph with vertex set V(WG,) = {vo, -,
Vn_1}, edge set E(WG,) = {di, -+ ,dn;€1, - ,€n}, where both d; and
e; having the same endpoints v;_; and v; for 1 <: < n.

It is known [7] that a wrapped butterfly W B,, can be represented as
a covering graph WG, x, Z7 with a Z}-voltage assignment ¢; ¢(e;) =
0---0forall:=1,2,--- ,nand ¢(d;) = 10---0,--- ,¢(d,,) = 0---01.
Then w,, ... 5, (d)(e;) =—1 forall: =1,2,--- ,n and

1 ifs;=1,

—1 otherwise,

oy ) (B)() = {

and
Doy, o) (9)(Vi) = 4

forall: =1,2,--- ,n.
For example, if G = WG'3 and (s1,52,53) = (1,1,0), then we get the
following figures.
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The adjacency matrix A(—aw(l Loy(8)) 18

4 -2
Hence, we have A(E’w(l'l‘o)(@) =(4)® (_2 4>

= (4D(P1) - 2A(P1)) @ (4D(P2) — 2A(Py)),

and

—

B(G oy 1 o000 A) = det((A — )11 + 24(Py)det (A - 4]z + 24(Py))

2

= (—1)*2%det (i—g—ﬁh - A(Pl)) det ( Iy —- A(Pz)>

- 4- A
=(-1)32%® (Pl; 4—2—) & (Pg; —2—) 4

In general, if Py is a path on k vertices and C} isa cycle of length k,
then

Q(WG"'W(_,IY” ,,n)(d’);/\)
_ { (-1)"2"®(Cr; 132) if (51,700 ,80) =(0,--,0),
(=1)"2"®( Py, ; %) - P( Py, 3;—)‘) otherwise,

where {k{,--- k. } C {1, - ,n}.
Let 1 <r <n —1. Identify d; with d; and s; with sj if « = j(mod n).
Then &(P,; %) is a factor of @(WG%( Nt A) if and only if
o1ram) C

Wiar, o (BN dit1) = - = wiey o o) ()(digror) = —1

and

Wy, an) (O)(di) = wigy s (PNaigr) =1
for some 7 € {1,2,--- ,n}. This is equivalent to say that

Sit1 = 0 = 841 = 0, ;= Si4,=1
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for some ¢ € {1,2,--- ,n}. Since

{(s1, "+ ,8n) €ELYsi41 =+ = 8i4r_1 = 0,8, = 8,4, = 1}| =271

for each 1 <7 < n, the multiplicity of ®(P,; %) in 9(C(WB,); ) is
n.on—r-— l

Now, <I>(Pn7 ) is a factor of @(VVG%( e A) if and only if for
some 1 € {1,2,--- ,n}, we, ... o)(0)di) =Tand wi, ... 5)(8)(di) = —
for all k # ¢. Hence the multiplicity of ®(Pp; 4—;’3) in ®(C(WB,); ) is
n.

Cleary, there exists only one factor of ®(Cly; 4—’2‘—3) in ®(C(WBp); A).
Therefore
‘)

51, v,n)(‘?’)’

U(WBp; A) = ®(C(WB,); M) = H (WG,
(31, ,5%)

n—r—1

n—1 an
. nen 2n 4“/\
= ((-1)"2") 1;[] [@ (PT,T )
A

_ n 4 — AN
«lo(p,. 2 @(Cn;uﬁ.
2 \ 2 J

To get the number of all spanning trees of WB,, we need to calculate
the product of all non-zero roots of both

- A 4 — X
d (Pr; il——;)——) =0 and ¢ (Cn;—é——) =0.

Since exp(T7r ¢) 1s the root of the equation 2™ —1 =0,

{1 (Z0) ) 1o (22

f1<k<n-1,

o (2) oy (322) {s (222) o (22))
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Hence,

k?( n
.2
”sm( )_4n1.

The spectrum of a path P, consists of the numbers 2 cos n+1 (k=1
n). Put 4z2 —-2cos— Then/\——4(1——cosnk+’“1 7£Ofor/‘..1,---7n
and
z k= z km
1- =4" 1~ cos
l;[l ( cos +1> kl;ll( osn+])
n 2\ %
=4" (H (] —~ €os b ) )
k=1 n
- !
S (A Y RNEIET Ly
it n+1 n+1
1
_n o, km \?
=4 (ICI;[lsm — 1)
=(n+1)2".

The spectrum of a cycle C,, consists of the numbers 2 cos y:l—"(k =1,---,

From % = 2cos =£E Zk , we can get A = 4—‘L(:os2kT7r # 0 for k =
1,--- ,n — 1. Hence
n 2k7 o, 2k
H (4 —4cos ———) = 4" H (1 -- oS H—)
n n
k=1 k=1
n—1
= 4""1 (2 sin® 21171)
n
k=1
n—1
2k
— 4)’1—-]271—] 2 e
H sin” —
k=1
— n2 271—1

We summarize our discussions in the following theorem.
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THEOREM 7. The number (W B,,) of spanning trees of the wrapped
butterfly W By, is n(n + 1)m2n —14n2" 020 r2 ™ 7 [pnml (g qyne2" 7T

r=1

PROOF. Let t(G) denote the number of spanning trees contained in
a graph G. Then it is well known that ¢(G) = %HA, where A runs
through all non-zero eigenvalues of the Laplacian matrix of G. Hence

n—1
1 n n—r—1 .
HWB,) = — [[ (- + 12" 7 {(n+1 .27yt 2n!
n .
r==1
2 -1 1 nt 1
— n(n + 1)n2n —~14n2" 3 2 2777 H(r + 1)n~2"_r" .
r=1
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