LAPLACIAN SPECTRA OF GRAPH BUNDLES

Ju Young Kim

ABSTRACT. The spectrum of the Laplacian matrix of a graph gives an information of the structure of the graph. For example, the product of non-zero eigenvalues of the characteristic polynomial of the Laplacian matrix of a graph with n vertices is n times of the number of spanning trees of that graph. The characteristic polynomial of the Laplacian matrix of a graph tells us the number of spanning trees and the connectivity of given graph. In this paper, we compute the characteristic polynomial of the Laplacian matrix of a graph bundle when its voltages lie in an abelian subgroup of the full automorphism group of the fibre; in particular, the automorphism group of the fibre is abelian. Also we study a relation between the characteristic polynomial of the Laplacian matrix of a graph G and that of the Laplacian matrix of a graph bundle over G. Some applications are also discussed.

1. Introduction

Let G be a finite simple connected graph with vertex set $V(G) = \{u_1, u_2, \dots, u_n\}$ and edge set E(G). We denote the set of vertices adjacent to $v \in V(G)$ by N(v) and call it the *neighborhood* of a vertex v. Denote the degree of a vertex u by d(u). Let

$$D(G) = \text{Diag}[d(u_1), d(u_2), \cdots, d(u_n)]$$

be the diagonal matrix of vertex degrees. The Laplacian matrix of G is C(G) = D(G) - A(G), where A(G) is the (0,1)-adjacency matrix of G. The characteristic polynomial of a graph G is the characteristic polynomial $\det(\lambda I - A(G))$ of A(G), denoted by $\Phi(G; \lambda)$. A zero of $\Phi(G; \lambda)$

Received April 27, 1996. Revised August 15, 1996.

¹⁹⁹¹ AMS Subject Classification: 05C05.

Key words and phrases: Laplacian, graph bundles, spanning trees.

This research was supported by a grant from Catholic University of Taegu Hyosung in 1994.

is called an eigenvalue of G. We denote the characteristic polynomial $\det(\lambda I - C(G))$ of the Laplacian matrix of G by $\Psi(G; \lambda)$. By |X|, we denote the cardinality of a finite set X. Convert G to a digraph \overrightarrow{G} by replacing each edge e of G with a pair of oppositely directed edges, say e^+ and e^- . We denote the set of directed edges of \overrightarrow{G} by $E(\overrightarrow{G})$. Note that the adjacency matrix of the graph G is the same as that of the digraph \overrightarrow{G} . Now, we introduce the notion of a graph bundle. By e^{-1} we mean the reverse edge to an edge $e \in E(\overrightarrow{G})$. Denote the directed edge e of G by uv if the initial and the terminal vertices of e are u and v, respectively. For a finite group Γ , a Γ -voltage assignment of G is a function $\phi: E(\overrightarrow{G}) \longrightarrow \Gamma$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ for all $e \in E(\overrightarrow{G})$. We denote the set of all Γ -voltage assignments of G by $C^1(G;\Gamma)$. Let F be another finite graph and let $\phi \in C^1(G; \operatorname{Aut}(F))$, where $\operatorname{Aut}(F)$ denotes the group of all graph automorphisms of F. Now, we construct a new graph $G \times^{\phi} F$ as follows: $V(G \times^{\phi} F) = V(G) \times V(F)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \times^{\phi} F$ if either $u_1 u_2 \in E(\overrightarrow{G})$ and $v_2 = \phi(u_1u_2)v_1$ or $u_1 = u_2$ and $v_1v_2 \in E(F)$. We call $G \times^{\phi} F$ the F-bundle over G associated with ϕ and the first coordinate projection $p^{\phi}:G imes^{\phi}F\longrightarrow G$ the bundle projection . We also call G and Fthe base and the fibre of the bundle $G \times^{\phi} F$, respectively. Moreover, if $F = \overline{K}_n$ the complement of the complete graph K_n on n vertices, then an F-bundle over G is just an n-fold covering graph of G. If $\phi(e)$ is the identity of $\operatorname{Aut}(F)$ for all $e \in E(\overrightarrow{G})$, then $G \times^{\phi} F$ is just the cartesian product of G and F.

2. Laplacian matrices of graph bundles

Let F be a finite graph and let ϕ be an $\operatorname{Aut}(F)$ -voltage assignment of G. For each $\gamma \in \operatorname{Aut}(F)$, let $\overrightarrow{G}_{(\phi,\gamma)}$ denote the spanning subgraph of the digraph \overrightarrow{G} whose directed edge set is $\phi^{-1}(\gamma)$, so that the digraph \overrightarrow{G} is the edge-disjoint union of spanning subgraphs $\overrightarrow{G}_{(\phi,\gamma)}$, $\gamma \in \operatorname{Aut}(F)$. Let $V(G) = \{u_1, u_2, \cdots, u_n\}$ and $V(F) = \{v_1, v_2, \cdots, v_m\}$. We define an order relation \leq on $V(G \times \phi F)$ as follows: for any two vertices (u_i, v_k) and (u_j, v_ℓ) of $G \times \phi F$, $(u_i, v_k) \leq (u_j, v_\ell)$ if and only if either $k < \ell$ or $k = \ell$ and $i \leq j$. Let $P(\gamma)$ denote the $m \times m$ permutation matrix

associated with $\gamma \in \operatorname{Aut}(F)$ corresponding to the action of $\operatorname{Aut}(F)$ on V(F). Here, the tensor product $A \otimes B$ of matrices A and B is considered as the matrix B having the element b_{ij} replaced by the matrix Ab_{ij} .

It is known [6] that the adjacency matrix of a graph bundle $G \times^{\phi} F$ is

$$A(G imes^{\phi} F) = \left(\sum_{\gamma \in \operatorname{Aut}(F)} A(\overrightarrow{G}_{(\phi, \gamma)}) \right) + I_{|V(G)|} \otimes A(F),$$

where $P(\gamma)$ is the permutation matrix associated with γ corresponding to the action of $\operatorname{Aut}(F)$ on V(F), and $I_{|V(G)|}$ is the identity matrix of order |V(G)|.

To find the diagonal matrix $D(G \times^{\phi} F)$ of vertex degrees, we recall that two vertices (u_i, v_k) and (u_j, v_ℓ) are adjacent in $G \times^{\phi} F$ if either $u_i u_j \in E(\overrightarrow{G})$ and $v_\ell = \phi(u_i u_j) v_k$ or $u_i = u_j$ and $v_k v_\ell \in E(F)$. Hence the degree of (u_i, v_k) is the sum of the degree of u_i in V(G) and the degree of v_k in V(F). It implies that the degree of (u_i, v_k) is (n(k-1)+i, n(k-1)+i)-entry of

$$D(G) \otimes I_{|V(F)|} + I_{|V(G)|} \otimes D(F).$$

That is,

$$D(G \times^{\phi} F) = D(G) \otimes I_{|V(F)|} + I_{|V(G)|} \otimes D(F).$$

Now, the Laplacian matrix $C(G \times^{\phi} F)$ of the bundle $G \times^{\phi} F$ is given as follows.

$$\begin{split} &D(G \times^{\phi} F) - A(G \times^{\phi} F) \\ &= \left[D(G) \otimes I_{|V(F)|} + I_{|V(G)|} \otimes D(F) \right] \\ &- \left[\left(\sum_{\gamma \in \operatorname{Aut}(F)} A(\overrightarrow{G}_{(\phi,\gamma)}) \otimes P(\gamma) \right) + I_{|V(G)|} \otimes A(F) \right] \\ &= &D(G) \otimes I_{|V(F)|} \\ &- \left[\left(\sum_{\gamma \in \operatorname{Aut}(F)} A(\overrightarrow{G}_{(\phi,\gamma)}) \otimes P(\gamma) \right) + I_{|V(C)|} \otimes (A(F) - D(F)) \right] \end{split}$$

$$\begin{split} =& D(G) \otimes I_{|V(F)|} \\ &- \left[\left(\sum_{\gamma \in \operatorname{Aut}(F)} A(\overrightarrow{G}_{(\phi,\gamma)}) \otimes P(\gamma) \right) + I_{|V(G)|} \otimes (-C(F)) \right]. \end{split}$$

We summarize our discussions in the following theorem.

THEOREM 1. The Laplacian matrix $C(G \times^{\phi} F)$ of the graph bundle $G \times^{\phi} F$ is

$$\begin{split} D(G \times^{\phi} F) - A(G \times^{\phi} F) &= D(G) \otimes I_{|V(F)|} - \sum_{\gamma \in \operatorname{Aut}(F)} A(\vec{G}_{(\phi,\gamma)}) \otimes P(\gamma) \\ &+ I_{|V(G)|} \otimes C(F). \end{split}$$

If the fibre F of the graph bundle $G \times^{\phi} F$ is $\overline{K_n}$, then $G \times^{\phi} F$ is an n-fold covering graph of G and the adjacency matrix A(F) is the zero matrix. Hence, we get the following corollary.

COROLLARY 1. The Laplacian matrix $C(G \times^{\phi} \overline{K_n})$ of an n-fold covering $G \times^{\phi} \overline{K_n}$ of G is

$$D(G)\otimes I_n - \sum_{\gamma\in S_n} A(\vec{G}_{(\phi,\gamma)})\otimes P(\gamma).$$

Since the cartesian product $G \times F$ of two graphs G and F is just the F-bundle over G associated with the trivial voltage assignment ϕ , *i.e.*, $\phi(e) =$ the identity for all $e \in E(\vec{G})$, and $A(G) = A(\vec{G})$, we get the following corollary.

COROLLARY 2. The Laplacian matrix $C(G \times F)$ of the cartesian product $G \times F$ of two graphs G and F is

$$C(G) \otimes I_{|V(F)|} + I_{|V(G)|} \otimes C(F).$$

From now on, we consider a voltage assignment φ of G whose image lies in an abelian subgroup Γ of $\operatorname{Aut}(F)$. Since the permutation matrices $P(\gamma), \gamma \in \Gamma$ and the Laplacian matrix C(F) of the fibre are all diagonalizable and commute with each other, they are simultaneously

diagonalizable. In other words, there exists an invertible matrix M_{Γ} such that $M_{\Gamma}P(\gamma)M_{\Gamma}^{-1}$ and $M_{\Gamma}C(F)M_{\Gamma}^{-1}$ are diagonal matrices for all $\gamma \in \Gamma$.

For convenience, we write

$$M_{\Gamma}P(\gamma)M_{\Gamma}^{-1} = \text{Diag}\left[\lambda_{(\gamma,1)}, \cdots, \lambda_{(\gamma,|V(F)|)}\right]$$

for $\gamma \in \Gamma$, and

$$M_{\Gamma}C(F)M_{\Gamma}^{-1} = \text{Diag}\left[\lambda_{(F,1)}, \cdots, \lambda_{(F,|V(F)|)}\right].$$

That is, $\lambda_{(\gamma,1)}, \dots, \lambda_{(\gamma,|V(F)|)}$ are the eigenvalues of the permutation matrix $P(\gamma)$, and $\lambda_{(F,1)}, \dots, \lambda_{(F,|V(F)|)}$ are the eigenvalues of the Laplacian matrix C(F). Then, Theorem 1 gives

$$(I_{|V(G)|} \otimes M_{\Gamma})C(G \times {}^{\phi}F)(I_{|V(G)|} \otimes M_{\Gamma})^{-1}$$

$$= \bigoplus_{i=1}^{|V(F)|} \left\{ D(G) - \left(\sum_{\gamma \in \Gamma} \lambda_{(\gamma,i)} A(\vec{G}_{(\phi,\gamma)}) + \lambda_{(F,i)} I_{|V(G)|} \right) \right\}$$

Now, we have

THEOREM 2. Let Γ be an abelian subgroup of $\operatorname{Aut}(F)$. Then, for any Γ -voltage assignment ϕ of G, the Laplacian matrix of the graph bundle $G \times^{\phi} F$ is similar to

$$\bigoplus_{i=1}^{|V(F)|} \left\{ D(G) - \left(\sum_{\gamma \in \Gamma} \lambda_{(\gamma,i)} A(\vec{G}_{(\phi,\gamma)}) + \lambda_{(F,i)} I_{|V(G)|} \right) \right\}.$$

COROLLARY 3. Let Γ be an abelian subgroup of the symmetric group S_n . Then, for any Γ -voltage assignment ϕ of G, the Laplacian matrix of an n-fold covering $G \times^{\phi} \overline{K}_n$ of G is similar to

$$\bigoplus_{i=1}^n \left\{ D(G) - \sum_{\gamma \in \Gamma} \lambda_{(\gamma,i)} A(\vec{G}_{(\phi,\gamma)}) \right\}.$$

COROLLARY 4. The Laplacian matrix of the cartesian product $G \times F$ of two graphs G and F is similar to

$$\bigoplus_{i=1}^m \left\{ C(G) + \lambda_{(F,i)} I_n \right\}.$$

3. Regular coverings

A covering $p: \tilde{G} \to G$ is said to be regular if there is subgroup A of the automorphism group $\operatorname{Aut}(\tilde{G})$ of \tilde{G} acting freely on \tilde{G} such that \tilde{G}/A is isomorphic to G.

The graph $G \times_{\phi} \Gamma$ derived from a voltage assignment $\phi : E(\overrightarrow{G}) \to \Gamma$ has as its vertex set $V(G) \times \Gamma$ and as its edge set $E(G) \times \Gamma$, so that an edge of $G \times_{\phi} \Gamma$ joins a vertex (u, γ) to $(v, \phi(e)\gamma)$ for $e = uv \in E(\overrightarrow{G})$ and $\gamma \in \Gamma$. A vertex (u, γ) is denoted by u_{γ} , and an edge (e, γ) by e_{γ} . The voltage group Γ acts on $G \times_{\phi} \Gamma$ as follows: for every $\gamma \in \Gamma$, let $\Phi_{\gamma} : G \times_{\phi} \Gamma \to G \times_{\phi} \Gamma$ denote the graph automorphism defined by $\Phi_{\gamma}(v_{\gamma'}) = v_{\gamma'\gamma^{-1}}$ on vertices and $\Phi_{\gamma}(e_{\gamma'}) = e_{\gamma'\gamma^{-1}}$ on edges. Then the natural map $G \times_{\phi} \Gamma \to (G \times_{\phi} \Gamma)/\Gamma \cong G$ is a regular $|\Gamma|$ -fold covering projection.

From now on, we assume that the voltage group Γ is a finite abelian group. Then Γ is isomorphic to a product of cyclic groups. Say, $\Gamma = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_\ell}$. For all $\alpha = 1, \dots, \ell$, let ρ_{α} denote a generator of the cyclic group $\mathbb{Z}_{n_{\alpha}}$ so that $\mathbb{Z}_{n_{\alpha}} = \{\rho_{\alpha}^0, \rho_{\alpha}^1, \dots, \rho_{\alpha}^{n_{\alpha}-1}\}$.

We define an order relation \leq on $\mathbb{Z}_{n_{\alpha}}$ by $\rho^{\ell} \leq \rho^{m}$ if and only if $\ell \leq m$. This order relation gives the relation as in Section 2 on Γ . For any $\gamma \in \Gamma$, let $P(\gamma)$ be the permutation matrix associated with γ under the above order. We note that the set of vertices of $G \times_{\phi} \Gamma$ also has the corresponding order relation if an order relation on V(G) is given.

Chae and Lee computed the adjacency matrix of the covering graph $G \times_{\phi} \Gamma$ as follows [3]:

$$A(G\times_{\phi}\Gamma)=\sum_{(k_1,\cdots,k_{\ell})}A(\overrightarrow{G}_{(\phi,(\rho_1^{k_1},\cdots,\rho_{\ell}^{k_{\ell}}))})\otimes P(\rho_1^{k_1},\cdots,\rho_{\ell}^{k_{\ell}}),$$

where $P(\rho_1^{k_1}, \dots, \rho_{\ell}^{k_{\ell}})$ is the permutation matrix associated with $(\rho_1^{k_1}, \dots, \rho_{\ell}^{k_{\ell}})$. Moreover, the adjacency matrix $A(G \times_{\phi} \Gamma)$ is similar to

$$\sum_{(k_1,\cdots,k_\ell)} A\left(\overrightarrow{G}_{(\phi,(\rho_1^{k_1},\cdots,\rho_\ell^{k_\ell}))}\right) \otimes \left(D(\rho_1)^{k_1} \otimes \cdots \otimes D(\rho_\ell)^{k_\ell}\right),$$

where $D(\rho_{\alpha})$ is the $n_{\alpha} \times n_{\alpha}$ matrix

$$\begin{pmatrix} 1 & & & & & \\ & \zeta_{\alpha} & & 0 & & \\ & & \zeta_{\alpha}^{2} & & & \\ & 0 & & \ddots & & \\ & & & & & \zeta_{\alpha}^{n_{\alpha}-1} \end{pmatrix}$$

and $\zeta_{\alpha} = \exp(\frac{2\pi}{n_{\alpha}}i)$ for $1 \le \alpha \le \ell$.

Let \mathbb{C} denote the field of complex numbers, $\Gamma = \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_\ell}$, and let ϕ be a Γ -voltage assignment of G. For each $(s_1, \dots, s_\ell) \in \Gamma$ with $0 \leq s_{\alpha} < n_{\alpha}$ and $1 \leq \alpha \leq \ell$, we define a weight function $\omega_{(s_1, \dots, s_\ell)}(\phi)$: $E(\overrightarrow{G}) \to \mathbb{C}$ by

$$\omega_{(s_1,\cdots,s_\ell)}(\phi)(e) = \prod_{\alpha=1}^\ell (\zeta_\alpha^{k_\alpha})^{s_\alpha} \quad \text{for} \quad \phi(e) = \prod_{\alpha=1}^\ell \rho_\alpha^{k_\alpha}.$$

Then, we have

$$\sum_{(k_1, \dots, k_{\ell})} A(\overrightarrow{G}_{(\phi, (\rho_1^{k_1}, \dots, \rho_{\ell}^{k_{\ell}}))}) \otimes (D(\rho_1)^{k_1} \otimes \dots \otimes D(\rho_{\ell})^{k_{\ell}}) \\
= \bigoplus_{(s_1, \dots, s_{\ell})} A(\overrightarrow{G}_{\omega_{(s_1, \dots, s_{\ell})}(\phi)}).$$

To find the diagonal matrix $D(G \times_{\phi} \Gamma)$ of vertex degrees, we recall that an edge of $G \times_{\phi} \Gamma$ joins a vertex (u, γ) to $(v, \phi(e)\gamma)$, for $e = uv \in E(G)$ and $\gamma \in \Gamma$. It implies that $D(G \times_{\phi} \Gamma) = D(G) \otimes I_{|\Gamma|}$. Hence, we get the following

THEROEM 3. Let $\Gamma = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_\ell}$ and let ϕ be a Γ -voltage assignment of G. Then, the Laplacian matrix $C(G \times_{\phi} \Gamma)$ of a regular covering graph $G \times_{\phi} \Gamma$ is

$$D(G)\otimes I_{|\Gamma|} - \sum_{(k_1,\cdots,k_\ell)} A(\overrightarrow{G}_{(\phi,(\rho_1^{k_1},\cdots,\rho_\ell^{k_\ell}))})\otimes P(\rho_1^{k_1},\cdots,\rho_\ell^{k_\ell}).$$

Moreover, it is similar to

$$\bigoplus_{(s_1,\cdots,s_\ell)}\{D(G)-A(\overrightarrow{G}_{\omega_{(s_1,\cdots,s_\ell)}(\phi)})\}.$$

4. Computational formulas

Let $\mathbb C$ denote the field of complex numbers, and let D be a digraph. A vertex-and-edge weighted digraph (in short, VEW digraph) is a pair $D_{\omega} = (D, \omega)$, where $\omega : E(D) \cup V(D) \to \mathbb C$ is a function on the set E(D) of edges in D and the set V(D) of vertices in D. We call D the underlying digraph of D_{ω} and ω the vertex-and-edge weight function on D_{ω} . Moreover, if $\omega(e^{-1}) = \overline{\omega(e)}$, the complex conjugate of $\omega(e)$, for each edge $e \in E(D)$, we say ω is a symmetric vertex-and-edge weight function and D_{ω} a symmetrically vertex-and-edge weighted digraph.

Given any VEW digraph D_{ω} , the adjacency matrix $A(D_{\omega}) = (a_{ij})$ of D_{ω} is the square matrix of order |V(D)| defined by

$$a_{ij} = \begin{cases} \omega(v_i) & if \quad i = j, \\ \omega(v_i v_j) & if \quad v_i v_j \in E(D), \\ 0 & otherwise. \end{cases}$$

The characteristic polynomial of VEW digraph D_{ω} is that of its adjacency matrix $A(D_{\omega})$. Now, for any Γ -voltage assignment ϕ of G, with notations as in Section 2, let $\omega_i(\phi): E(\overrightarrow{G}) \cup V(\overrightarrow{G}) \to \mathbb{C}$ be the function defined by $\omega_i(\phi)(e) = -\lambda_{(\phi(e),i)}$ for $e \in E(\overrightarrow{G})$ and $\omega_i(\phi)(v_j) = d(v_j)$, the degree of v_j in G, so the adjacency matrix of a VEW digraph $(\overrightarrow{G}, \omega_i(\phi))$ is the matrix

$$D(G) - \sum_{\gamma \in \Gamma} \lambda_{(\gamma,i)} A(\overrightarrow{G}_{(\phi,\gamma)}),$$

for each $i=1,2,\cdots,|V(F)|$. Then, we can obtain the characteristic polynomial of the Laplacian matrix of the graph bundle $G \times^{\phi} F$ from Theorem 2 as follows.

THEOREM 4. Let Γ be an abelian subgroup of $\operatorname{Aut}(F)$ and let ϕ be a Γ -voltage assignment of G. Then the characteristic polynomial of the Laplacian matrix $C(G \times^{\phi} F)$ of $G \times^{\phi} F$ is

$$\Psi(G\times^{\phi}F;\lambda)=\prod_{i=1}^{|V(F)|}\Phi(\vec{G}_{\omega_{i}(\phi)};\lambda-\lambda_{(F,i)}).$$

COROLLARY 5. (1) If Γ be an abelian subgroup of S_n and ϕ a Γ -voltage assignment of G, then the characteristic polynomial of the Laplacian matrix $C(G \times^{\phi} \overline{K_n})$ of an n-fold covering graph of G is

$$\Psi(G \times^{\phi} \overline{K_n}; \lambda) = \prod_{i=1}^{n} \Phi(\overrightarrow{G}_{\omega_i(\phi)}; \lambda).$$

(2) The characteristic polynomial of the Laplacian matrix $C(G \times F)$ of the cartesian product $G \times F$ of two graphs G and F is

$$\Psi(G \times F; \lambda) = \prod_{i=1}^{|V(F)|} \Psi(G; \lambda - \lambda_{(F,i)}).$$

Corollary 5.(2) shows that the Laplacian eigenvalues of the cartesian product $G \times F$ of graphs G and F are equal to all the possible sums of eigenvalues of two factors: $\lambda_{(G,j)} + \lambda_{(F,i)}$, where $\lambda_{(G,j)}$, $j = 1, 2, \dots, |V(G)|$ and $\lambda_{(F,i)}$, $i = 1, 2, \dots, |V(F)|$, are the eigenvalues of C(G) and C(F), respectively.

Now, we need to calculate the characteristic polynomials $\Phi(\overrightarrow{G}_{\omega_i(\phi)}; \lambda)$ of a VEW digraph $\overrightarrow{G}_{\omega_i(\phi)}$ for $i = 1, 2, \dots, |V(F)|$.

An undirected simple graph S is called a basic figure if each of its components is either K_1 or K_2 or a cycle $C_m(m \geq 3)$. We denote by $B_j(G)$ the set of all subgraphs of G which are basic figures with j vertices. Then, the characteristic polynomial of a VEW digraph $\overrightarrow{G}_{\omega_i(\phi)}$ is given as follows:

Let Γ be an abelian subgroup of $\operatorname{Aut}(F)$. Then, for any Γ -voltage assignment ϕ of G, we have

$$\Phi(\overrightarrow{G}_{\omega_{i}(\phi)};\lambda) = \lambda^{|V(G)|} + \sum_{j=1}^{|V(G)|} \left(\sum_{S \in B_{j}(G)} (-1)^{\kappa(S)} \times \prod_{u \in I_{v}(S)} \omega_{i}(\phi)(u) \right) \times \prod_{e \in K_{2}(S)} \omega(e^{+})\omega(e^{-}) \times \prod_{C \in C(S)} (\omega_{i}(\phi)(C^{+}) + (\omega_{i}(\phi)(C^{+}))^{-1}) \lambda^{|V(G)| - j}.$$

In this equation, $\kappa(S)$ denotes the number of components of $S, K_2(S)$ the subgraph of S consisting of all components isomorphic to K_2 , C(S) the set all cycle $C_m(m \geq 3)$ in S, and $I_v(S)$ does the set of all isolated vertices in S. If a component of S in G is a cycle C, C^+ and C^- are two linear directed cycle and $\omega_i(\phi)(C^+) = \prod_{C \in E(C^+)} \omega(e)$.

Now, we calculate the characteristic polynomial of a regular covering. For any Γ -voltage assignment ϕ of G, with notations as in Section 3, let $\omega_{(s_1,\cdots,s_\ell)}$ $(\phi): E(\overrightarrow{G}) \cup V(\overrightarrow{G}) \to \mathbb{C}$ be the function defined by $\omega_{(s_1,\cdots,s_\ell)}(\phi)(e) = -\prod_{\alpha=1}^\ell (\zeta_\alpha^{k_\alpha})^{s_\alpha}$ for $\phi(e) = \prod_{\alpha=1}^\ell \rho_\alpha^{k_\alpha}, e \in E(\overrightarrow{G})$ and $\omega_{(s_1,\cdots,s_\ell)}(\phi)(v_j) = d(v_j)$, the degree of v_j in G.

Then, the following comes from Theorem 3.

THEOREM 5.

$$\Psi(G\times_{\phi}\Gamma;\lambda)=\Phi(C(G\times_{\phi}\Gamma);\lambda)=\prod_{(s_1,\cdots,s_{\ell})}\Phi(\,\overline{G}^{\dagger}_{\,\,\omega_{(s_1,\cdots,s_{\ell})}(\phi)};\lambda).$$

Now, we need to calculate the characteristic polynomial $\Phi(\overrightarrow{G}_{\omega_{(s_1,\cdots,s_\ell)}}, \lambda)$ of a VEW digraph $\overrightarrow{G}_{\omega_{(s_1,\cdots,s_\ell)}}(\phi)$.

Finally, we compute the characteristic polynomial $\Phi(\overrightarrow{G}_{\omega_{(s_1,\cdots,s_\ell)}(\phi)};\lambda)$ of a VEW digraph $\overrightarrow{G}_{\omega_{(s_1,\cdots,s_\ell)}(\phi)}$ for a pseudograph G as a generalization.

In an undirected pseudograph, two elementary configurations S_1 and S_2 are equivalent if the identity map of vertex set V(G) induces an isomorphism between S_1 and S_2 . We denote the set of equivalence classes

of $B_j(G)$ by $[B_j(G)]$ for $j=1,\cdots,|V(G)|$. Let [S] be an element of $[B_j(G)]$. Then [S] is an equivalence class of K_1 or K_2 or cycles. Let $E(K_2[S])$ be the equivalence classes of the copies of K_2 and E(C[S]) the equivalence classes of the cycles in [S]. Note every copy of K_2 in G induces two directed edges in \overrightarrow{G} , say e^+ and e^- , and every loop is a cycle of length 1. Then we can get the following theorem.

THEOREM 6. Let Γ be a finite abelian group and let ϕ be a Γ -voltage assignment of G. Let ω be one of $\omega_{(s_1,\cdots,s_\ell)}(\phi)$. Then, for each $[S] \in [B_j(G)]$, the contribution of [S] in the coefficient of $\lambda^{|V(G)|-j}$ of $\Phi(\overrightarrow{G}_{\omega};\lambda)$ is

$$(-1)^{\kappa(S)} \prod_{u \in I_{v}(S)} \omega(u) \prod_{[e] \in E(K_{2}[S])} \left(\sum_{e \in [e]} \omega(e^{+}) \right) \left(\sum_{e \in [e]} (\omega(e^{+}))^{-1} \right) 2^{|E(C[S])|}$$

$$\times \prod_{[C] \in E(C[S])} \left(\sum_{C \in [C]} Re(\omega(C^{+})) \right),$$

where $Re(\omega(C^+))$ is the real part of $\prod_{e \in C^+} \omega(e)$ and S is a representative of [S]

5. Applications

Let n be a positive integer. The wrapped butterfly WB_n of order n has vertex set

$$V(WB_n) = \mathbb{Z}_n \times \mathbb{Z}_2^n,$$

and each vertex

$$<\ell,\beta_0\beta_1\cdots\beta_{\ell-1}\alpha\beta_{\ell+1}\cdots\beta_{n-1}>$$

is adjacent to each of the vertices

$$<\ell+1 \pmod{n}, \beta_0\beta_1\cdots\beta_{\ell-1}\omega\beta_{\ell+1}\cdots\beta_{n-1}>$$

for $\omega \in \mathbb{Z}_2$. For example, WB_3 can be drawn as follows:

FIGURE 1. The wrapped butterfly WB_3 .

Let WG_n be the pseudograph with vertex set $V(WG_n) = \{v_0, \dots, v_{n-1}\}$, edge set $E(WG_n) = \{d_1, \dots, d_n; e_1, \dots, e_n\}$, where both d_i and e_i having the same endpoints v_{i-1} and v_i for $1 \leq i \leq n$.

It is known [7] that a wrapped butterfly WB_n can be represented as a covering graph $WG_n \times_{\phi} \mathbb{Z}_2^n$ with a \mathbb{Z}_2^n -voltage assignment ϕ ; $\phi(e_i) = 0 \cdots 0$ for all $i = 1, 2, \cdots, n$ and $\phi(d_1) = 10 \cdots 0, \cdots, \phi(d_n) = 0 \cdots 01$. Then $\omega_{(s_1, \dots, s_n)}(\phi)(e_i) = -1$ for all $i = 1, 2, \dots, n$ and

$$\omega_{(s_1,\dots,s_n)}(\phi)(d_i) = \begin{cases} 1 & \text{if } s_i = 1, \\ -1 & \text{otherwise,} \end{cases}$$

and

$$\omega_{(s_1,\cdots,s_n)}(\phi)(v_i)=4$$

for all $i = 1, 2, \dots, n$.

For example, if $G = WG_3$ and $(s_1, s_2, s_3) = (1, 1, 0)$, then we get the following figures.

The adjacency matrix $A(\overrightarrow{G}_{\omega_{(1,1,0)}(\phi)})$ is

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & -2 \\ 0 & -2 & 4 \end{pmatrix}.$$

Hence, we have

$$A(\overrightarrow{G}_{\omega_{(1,1,0)}(\phi)}) = (4) \oplus \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$
$$= (4D(P_1) - 2A(P_1)) \oplus (4D(P_2) - 2A(P_2)),$$

and

$$\begin{split} \Phi(\overrightarrow{G}_{\omega_{(1,1,0)}(\phi)};\lambda) &= \det((\lambda-4)I_1 + 2A(P_1))\det((\lambda-4)I_2 + 2A(P_2)) \\ &= (-1)^3 2^3 \det\left(\frac{4-\lambda}{2}I_1 - A(P_1)\right) \det\left(\frac{4-\lambda}{2}I_2 - A(P_2)\right) \\ &= (-1)^3 2^3 \Phi\left(P_1; \frac{4-\lambda}{2}\right) \Phi\left(P_2; \frac{4-\lambda}{2}\right). \end{split}$$

In general, if P_k is a path on k vertices and C_k is a cycle of length k, then

$$\begin{split} &\Phi(WG_{n_{\omega_{(s_1,\cdots,s_n)}(\phi)}};\lambda)\\ &= \left\{ \begin{array}{ll} (-1)^n 2^n \Phi(C_n;\frac{4-\lambda}{2}) & \text{if} \quad (s_1,\cdots,s_n) = (0,\cdots,0), \\ (-1)^n 2^n \Phi(P_{k_1};\frac{4-\lambda}{2}) \cdots \Phi(P_{k_r};\frac{4-\lambda}{2}) & \text{otherwise,} \end{array} \right. \end{split}$$

where $\{k_1, \dots, k_r\} \subset \{1, \dots, n\}$.

Let $1 \leq r \leq n-1$. Identify d_i with d_j and s_i with s_j if $i \equiv j \pmod{n}$. Then $\Phi(P_r; \frac{4-\lambda}{2})$ is a factor of $\Phi(WG_{n_{\omega_{(s_1, \dots, s_n)}(s)}}; \lambda)$ if and only if

$$\omega_{(s_1,\cdots,s_n)}(\phi)(d_{i+1}) = \cdots = \omega_{(s_1,\cdots,s_n)}(\phi)(d_{i+r-1}) = -1$$

and

$$\omega_{(s_1,\cdots,s_n)}(\phi)(d_i) = \omega_{(s_1,\cdots,s_n)}(\phi)(a_{i+r}) = 1$$

for some $i \in \{1, 2, \dots, n\}$. This is equivalent to say that

$$s_{i+1} = \cdots = s_{i+r-1} = 0, \qquad s_i = s_{i+r} = 1$$

for some $i \in \{1, 2, \dots, n\}$. Since

$$\left| \{ (s_1, \dots, s_n) \in \mathbb{Z}_2^n s_{i+1} = \dots = s_{i+r-1} = 0, s_i = s_{i+r} = 1 \} \right| = 2^{n-r-1}$$

for each $1 \leq i \leq n$, the multiplicity of $\Phi(P_r; \frac{4-\lambda}{2})$ in $\Phi(C(WB_n); \lambda)$ is $n \cdot 2^{n-r-1}$.

Now, $\Phi(P_n; \frac{4-\lambda}{2})$ is a factor of $\Phi(WG_{n_{\omega_{(s_1,\cdots,s_n)}(\phi)}}; \lambda)$ if and only if for some $i \in \{1, 2, \cdots, n\}$, $\omega_{(s_1,\cdots,s_n)}(\phi)(d_i) = 1$ and $\omega_{(s_1,\cdots,s_n)}(\phi)(d_k) = -1$ for all $k \neq i$. Hence the multiplicity of $\Phi(P_n; \frac{4-\lambda}{2})$ in $\Phi(C(WB_n); \lambda)$ is n.

Cleary, there exists only one factor of $\Phi(C_n; \frac{4-\lambda}{2})$ in $\Phi(C(WB_n); \lambda)$. Therefore

$$\begin{split} \Psi(WB_n;\lambda) &= \Phi(C(WB_n);\lambda) = \prod_{(s_1,\cdots,s_n)} \Phi(WG_{n_{\omega_{(s_1,\cdots,s_n)}(\phi)}};\lambda) \\ &= ((-1)^n 2^n)^{2^n} \prod_{r=1}^{n-1} \left[\Phi\left(P_r; \frac{4-\lambda}{2}\right) \right]^{n \cdot 2^{n-r-1}} \\ &\times \left[\Phi\left(P_n; \frac{4-\lambda}{2}\right) \right]^n \Phi\left(C_n; \frac{4-\lambda}{2}\right). \end{split}$$

To get the number of all spanning trees of WB_n , we need to calculate the product of all non-zero roots of both

$$\Phi\left(P_r; \frac{4-\lambda}{2}\right) = 0 \quad \text{and} \quad \Phi\left(C_n; \frac{4-\lambda}{2}\right) = 0.$$

Since $\exp(\frac{2\pi}{n}i)$ is the root of the equation $x^n - 1 = 0$,

$$\left\{1 - \exp\left(\frac{2\pi}{n}i\right)\right\} \times \dots \times \left\{1 - \exp\left(\frac{2(n-1)\pi}{n}i\right)\right\} = n.$$

If $1 \le k \le n - 1$,

$$\begin{split} 1 - \exp\left(\frac{2k\pi}{n}i\right) &= \exp\left(\frac{k\pi}{n}i\right) \left\{\exp\left(\frac{-k\pi}{n}i\right) - \exp\left(\frac{k\pi}{n}i\right)\right\} \\ &= (-2i)\exp\left(\frac{k\pi}{n}i\right) \sin\frac{k\pi}{n}. \end{split}$$

Hence,

$$\prod_{k=1}^{n-1} \sin^2(\frac{k\pi}{n}) = \frac{n^2}{4^{n-1}}.$$

The spectrum of a path P_n consists of the numbers $2\cos\frac{k\pi}{n+1}(k=1,\cdots,n)$. Put $\frac{4-\lambda}{2}=2\cos\frac{k\pi}{n+1}$. Then $\lambda=4(1-\cos\frac{k\pi}{n+1})\neq 0$ for $k=1,\cdots,n$ and

$$\prod_{k=1}^{n} 4\left(1 - \cos\frac{k\pi}{n+1}\right) = 4^{n} \prod_{k=1}^{n} \left(1 - \cos\frac{k\pi}{n+1}\right)$$

$$= 4^{n} \left(\prod_{k=1}^{n} \left(1 - \cos\frac{k\pi}{n+1}\right)^{2}\right)^{\frac{1}{2}}$$

$$= 4^{n} \left(\prod_{k=1}^{n} \left(1 - \cos\frac{k\pi}{n+1}\right) \left(1 - \cos\frac{((n+1) - k)\pi}{n+1}\right)\right)^{\frac{1}{2}}$$

$$= 4^{n} \left(\prod_{k=1}^{n} \sin^{2}\frac{k\pi}{n+1}\right)^{\frac{1}{2}}$$

$$= (n+1)2^{n}.$$

The spectrum of a cycle C_n consists of the numbers $2\cos\frac{2k\pi}{n}(k=1,\cdots,n)$.

From $\frac{4-\lambda}{2} = 2\cos\frac{2k\pi}{n}$, we can get $\lambda = 4 - 4\cos\frac{2k\pi}{n} \neq 0$ for $k = 1, \dots, n-1$. Hence

$$\prod_{k=1}^{n-1} \left(4 - 4\cos\frac{2k\pi}{n} \right) = 4^{n-1} \prod_{k=1}^{n-1} \left(1 - \cos\frac{2k\pi}{n} \right)$$

$$= 4^{n-1} \prod_{k=1}^{n-1} \left(2\sin^2\frac{2k\pi}{n} \right)$$

$$= 4^{n-1} 2^{n-1} \prod_{k=1}^{n-1} \sin^2\frac{2k\pi}{n}$$

$$= n^2 \cdot 2^{n-1}$$

We summarize our discussions in the following theorem.

THEOREM 7. The number $t(WB_n)$ of spanning trees of the wrapped butterfly WB_n is $n(n+1)^n 2^{n^2-1+n2^n} \sum_{r=1}^{n-1} r 2^{-r-1} \prod_{r=1}^{n-1} (r+1)^{n \cdot 2^{n-r-1}}$.

PROOF. Let t(G) denote the number of spanning trees contained in a graph G. Then it is well known that $t(G) = \frac{1}{n} \prod \lambda$, where λ runs through all non-zero eigenvalues of the Laplacian matrix of G. Hence

$$t(WB_n) = \frac{1}{n \cdot 2^n} \prod_{r=1}^{n-1} ((r+1)2^r)^{n2^{n-r-1}} \{(n+1) \cdot 2^n\}^n n^2 \cdot 2^{n-1}$$
$$= n(n+1)^n 2^{n^2 - 1 + n2^n} \sum_{r=1}^{n-1} r2^{-r-1} \prod_{r=1}^{n-1} (r+1)^{n \cdot 2^{n-r-1}}.$$

References

- 1. Biggs, N., Algebraic Graph Theory 2nd ed., Cambridge University Press, 1995.
- Chae, Y., Kwak, J. H. and Lee, J., Characteristic polynomials of some graph bundle, J. Korean Math. Soc. 30 (1993), 229-249.
- 3. Chae, Y. and Lee, J., Regular coverings and manifold crystallization, Comm. Korean Math. Soc. 6 (1991), 229-310.
- Cvetkovic, D. M., Doob, M. and Sacks, H., Spectra of Graphs, Academic Press, New York, 1979.
- 5. Gross, J. L. and Tucker, T. W., Topological Graph Theory, John Wiley and Sons, New York, 1989.
- 6. Kwak, J. H. and Lee, J., Characteristic polinomials of some graph bundles II, Linear and Multilinear Algebra 32 (1992), 61-73.
- 7. _____, A construction method of network mappings, J. Korea Information Science Soc. 32 (1995), 1239-1249.
- 8. _____, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
- Sohn, M. Y. and Lee, J., Characteristic polynomials of some weighted graph bundles and its application to links, Internat. J. Math. & Math. Sci. 17 No. 3 (1994), 503-510.

Department of Mathematics Catholic University of Taugu-Hyosung Kyongsan 713-702, Korea