• Title/Summary/Keyword: gram-positive bacteria(Peptidoglycan)

Search Result 12, Processing Time 0.033 seconds

Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal

  • Kim, Chan-Hee;Park, Ji-Won;Ha, Nam-Chul;Kang, Hee-Jung;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • The major cell wall components of bacteria are lipopolysaccharide, peptidoglycan, and teichoic acid. These molecules are known to trigger strong innate immune responses in the host. The molecular mechanisms by which the host recognizes the peptidoglycan of Gram-positive bacteria and amplifies this peptidoglycan recognition signals to mount an immune response remain largely unclear. Recent, elegant genetic and biochemical studies are revealing details of the molecular recognition mechanism and the signalling pathways triggered by bacterial peptidoglycan. Here we review recent progress in elucidating the molecular details of peptidoglycan recognition and its signalling pathways in insects. We also attempt to evaluate the importance of this issue for understanding innate immunity.

Antimicrobial Activity of Oleanolic Acid for Foodborne Bacteria (식중독 세균에 대한 Oleanolic Acid의 항균활성)

  • Choi, Kyoung-Hee;Kim, Sejeong;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.98-102
    • /
    • 2015
  • Oleanolic acid and its derivatives are pentacyclic triterpene acids, which are produced in many plants and herbs. These are considered safe and thus, oleanolic acid is now used for cosmetic and pharmaceutical industry. Oleanolic acid affects peptidoglycan in cell wall of bacteria. Hence, the antimicrobial activity of oleanolic acid is not very obvious to Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Shigella flexneri, and Shigella sonnei because the peptidoglycan is covered with outer membrane. However, oleanolic acid derivatives showed improved antimicrobial activity to Gram-negative bacteria. For Gram-positive bacteria such as Staphylococcus aureus and Listeria monocytogenes, oleanolic acid was very effective on reducing the cell counts of the pathogens. In addition, the cytotoxicity of oleanolic acid for human cell lines was minimal. Therefore, oleanolic acid should be considered as an antimicrobial food additive and a therapeutic agent to control foodborne pathogens.

해양에서 분리한 Bacillus subtilis SH-1이 분비하는 용균효소의 정제 및 특성

  • 진성현;정영기;류병호
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.191-196
    • /
    • 1996
  • The bacteriolytic enzyme produced from Bacillus subtilis SH-1 was purified and characterized, and its molecular weight was determined. The bacteriolytic enzyme activity was increased about 66.5 times via purification with recovery yield of 18.5%. The optimum pH and temperature of this enzyme were 9.0 and 50$\circ$C. The enzyme was stable within a pH range of 6.0-10.0 and unstable above 60 . The molecular weight of the enzyme was estimated to be 23,000 dalton in a form of monomer with no other subunits. Effect of the enzyme on the lysis of bacteria engaged in food posion was tested. The lysis degree was below 31% against Gram negative bacteria and above 48% in Gram positive bacteria. The values higher than 73% were obtained against Vibrio sp. and Listeria sp. As the turbidity of dissolved peptidoglycan clecreases, the free amino group levels were increased. And, based on hydrolysis of casein, this enzyme was thought to be an endopeptidase.

  • PDF

Chemosystematic and Phenotypic Characterization of Gram-positive Bacteria from Coastal Seawater, Korea (한국 근해에서 분리한 그람양성 세균의 화학 분류학적 및 표현형적 특성)

  • 전정훈;박진숙
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2000
  • Twenty-five halotolerant gram-positlve bacteria were isolated from the coastal seawater 01 Cheju Island and Incheon J&yakdo Chemosystematic and phenotypic characteristics were used to iuvestigate the taxonomic position of these bacteria. According to their chemosystematic characteristics, the twenty-tive isolates were divided into 4 groups. Group 1 bacteria possesed 40.1 to 49.9 inol% m DNA G+C content, menaquinone-7 as a major quinone, and meso-Alpm as a diamino acid of peptidoglycan. Group 1 tam were identified as Bacilluspumilis, Bacillus lichenifbrrizis, Bacillus megaterium, Bncill~rsubtilis. Group 2 bacteria possessed 63.9 to 66.4 mol% and MK-8. They were all in the genus Arth~obaclm-. Group 3 bacteria possessed 31.0 to 37.6 mol% and MK-7. They were identified as Staphylococcus haeniol.viicvs, Siaph~~lococc~is sapropl~j~ticns, and Siaphylococcus intermediru.. Group 4 bacterium possessed 72.0mol% and MK-8 and was identified as ~Lficrococcus ltdtezm. Bacillus species accounted for 68% of h e total isolates.

  • PDF

Peptidoglycan Induces the Production of Interleukin-8 via Calcium Signaling in Human Gingival Epithelium

  • Son, Aran;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of grampositive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.

Bio-Rex 젤을 이용한 난백으로 부터의 Lysozyme의 분리

  • Kim, Hyeong-Won;Park, In-Gyu;Song, Jae-Yang;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.493-496
    • /
    • 2002
  • Lysozyme is an enzyme which has the ability to lyse bacteria such as Micrococcus lysodeikticus or gram positive and gram negative bacteria by hydrolyzing in the peptidoglycan layer of the bacterial cell wall. Lysozyme is abundantly contained in an egg white. In order to obtain lysozyme from egg white, we used Bio-rex ion exchange chromatography and can identify the exist of lysozyme by SDS-PAGE and protein assay.

  • PDF

Inactivation of the Wall-Associated De-N-acetylase (PgdA) of Listeria monocytogenes Results in Greater Susceptibility of the Cells to Induced Autolysis

  • Popowska, Magdalena;Kusio, Monika;Szymanska, Paulina;Markiewicz, Zdzislaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.932-945
    • /
    • 2009
  • Several species of Gram-positive bacteria have cell wall peptidoglycan (syn. murein) in which not all of the sugar moieties are N-acetylated. This has recently been shown to be a secondary effect, caused by the action of a peptidoglycan N-acetylglucosamine deacetylase. We have found that the opportunistic pathogen Listeria monocytogenes is unusual in having three enzymes with such activity, two of which remain in the cytoplasm. Here, we examine the enzyme (PgdA) that crosses the cytoplasmic membrane and is localized in the cell wall. We purified a hexa-His-tagged form of PgdA to study its activity and constructed a mutant devoid of functional Lmo0415 (PgdA) protein. L. monocytogenes PgdA protein exhibited peptidoglycan N-acetylglucosamine deacetylase activity with natural substrates (peptidoglycan) from both L. monocytogenes and Escherichia coli as well as the peptidoglycan sugar chain component N-acetylglucosamine, but not with N-acetylmuramic acid. As was reported recently [6], inactivation of the structural gene was not lethal for L. monocytogenes nor did it affect growth rate or morphology of the cells. However, the pgdA mutant was more prone to autolysis induced by such agents as Triton X-100 and EDTA, and is more susceptible to the cationic antimicrobial peptides (CAMP) lysozyme and mutanolysin, using either peptidoglycan muramidases or autolysis-inducing agents. The pgdA mutant was also slightly more susceptible than the wild-type strain to the action of certain beta-lactam antibiotics. Our results indicate that protein PgdA plays a protective physiological role for listerial cells.

Anti-inflammatory effect of ethanol extract from Ecklomia cava on gram-positive bacteria(Peptidoglycan)-induced macrophages (그람-양성균(Peptidoglycan)으로 유도한 대식세포에서 감태 에탄올 추출물의 항염증 효과)

  • Kang, Ok-Hwa;Kim, Sung-Bae;Keum, Joon-Ho;Mun, Su-Hyun;Kim, Yong-Sik;An, Byung-Kwan;An, Hyeon-Jin;Kwon, Dong-Yeul
    • Herbal Formula Science
    • /
    • v.19 no.1
    • /
    • pp.195-205
    • /
    • 2011
  • Objectives : Ecklonia cava is brown alga(Laminariaceae) which grows is sea, it has antioxidant, diarrhea and anticoagulant effect. In this study, the effect of ethanol extract of Ecklonia cava (EC) on peptidoglycan(PGN) -induced NO production in RAW 264.7 cells was investigated. Methods : In the present study, IL-6 production was measured using the enzyme-linked immunosorbent assay(ELISA), prostaglandin $\E_2$($\PGE_2$) production was measured using the EIA kit, and inducible NO synthase(iNOS), cyclooxygenase-2(COX-2), and mitogen-activated protein kinase(MAPK) activation, as determined by western blot analysis and reverse transcription -polymerase chain reaction(RT-PCR). Results : EC inhibited PGN-induced NO and IL-6 production. Consistent with these observations, the protein expression of iNOS and COX-2 were inhibited by EC. Moreover, EC suppressed the phosphorylation of extracellular signal-regulated kinase(ERK) 1/2 in PGN-induced RAW 264.7. Conclusions : These results suggest that EC has inhibitory effects on PGN-induced $\PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the MAPKs phosphorylation.

Characteristics and Lytic Activity of Phage-Derived Peptidoglycan Hydrolase, LysSAP8, as a Potent Alternative Biocontrol Agent for Staphylococcus aureus

  • Yu, Jun-Hyeok;Lim, Jeong-A;Chang, Hyun-Joo;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1916-1924
    • /
    • 2019
  • Outbreaks of staphylococcal food poisoning (SFP) causing serious human diseases and economic losses have been reported globally. Furthermore, the spread of Staphylococcus aureus with increased resistance to multiple antimicrobial agents has become a major concern in the food industries and medicine. Here, we isolated an endolysin LysSAP8, as one of the peptidoglycan hydrolases, derived from the bacteriophage SAP8 infecting S. aureus. This endolysin was tagged with a 6×His at the C-terminal of the target protein and purified using affinity chromatography. LysSAP8 demonstrated lytic activity against a broad spectrum of bacteria, which included a majority of the staphylococcal strains tested in this study as well as the methicillin-resistant S. aureus (MRSA); however, no such activity was observed against other gram-positive or gram-negative bacteria. Additionally, LysSAP8 could maintain bactericidal activity until 0.1 nM working concentration and after heat treatment at 37℃ for 30 min. The ability of LysSAP8 to lyse cells under varying conditions of temperature (4-43℃), pH (3-9), and NaCl concentrations (0-1,000 mM), and divalent metal ions (Ca2+, Co2+, Cu2+, Mg2+, Mn2+, Hg2+, and Zn2+) was examined. At the optimized condition, LysSAP8 could disrupt approximately 3.46 log CFU/ml of the planktonic cells in their exponential phase of growth within 30 min. In this study, we have suggested that LysSAP8 could be a potent alternative as a biocontrol agent that can be used to combat MRSA.

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents

  • Graziani, Ana Claudia;Stets, Maria Isabel;Lopes, Ana Luisa Kalb;Schluga, Pedro Henrique Caires;Marton, Soledad;Ferreira, Ieda Mendes;de Andrade, Antero Silva Ribeiro;Krieger, Marco Aurelio;Cardoso, Josiane
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.838-843
    • /
    • 2017
  • Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.