Browse > Article
http://dx.doi.org/10.4014/jmb.1908.08021

Characteristics and Lytic Activity of Phage-Derived Peptidoglycan Hydrolase, LysSAP8, as a Potent Alternative Biocontrol Agent for Staphylococcus aureus  

Yu, Jun-Hyeok (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Lim, Jeong-A (Research Group of Consumer Safety, Korea Food Research Institute)
Chang, Hyun-Joo (Research Group of Consumer Safety, Korea Food Research Institute)
Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.12, 2019 , pp. 1916-1924 More about this Journal
Abstract
Outbreaks of staphylococcal food poisoning (SFP) causing serious human diseases and economic losses have been reported globally. Furthermore, the spread of Staphylococcus aureus with increased resistance to multiple antimicrobial agents has become a major concern in the food industries and medicine. Here, we isolated an endolysin LysSAP8, as one of the peptidoglycan hydrolases, derived from the bacteriophage SAP8 infecting S. aureus. This endolysin was tagged with a 6×His at the C-terminal of the target protein and purified using affinity chromatography. LysSAP8 demonstrated lytic activity against a broad spectrum of bacteria, which included a majority of the staphylococcal strains tested in this study as well as the methicillin-resistant S. aureus (MRSA); however, no such activity was observed against other gram-positive or gram-negative bacteria. Additionally, LysSAP8 could maintain bactericidal activity until 0.1 nM working concentration and after heat treatment at 37℃ for 30 min. The ability of LysSAP8 to lyse cells under varying conditions of temperature (4-43℃), pH (3-9), and NaCl concentrations (0-1,000 mM), and divalent metal ions (Ca2+, Co2+, Cu2+, Mg2+, Mn2+, Hg2+, and Zn2+) was examined. At the optimized condition, LysSAP8 could disrupt approximately 3.46 log CFU/ml of the planktonic cells in their exponential phase of growth within 30 min. In this study, we have suggested that LysSAP8 could be a potent alternative as a biocontrol agent that can be used to combat MRSA.
Keywords
Staphylococcus aureus; bacteriophage; endolysin; MRSA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Melo LDR, Brandao A, Akturk E, Santos SB, Azeredo J. 2018. Characterization of a new Staphylococcus aureus kayvirus harboring a lysin active against biofilms. Viruses 10(4). pii: E182.
2 Kim NH, Park WB, Cho JE, Choi YJ, Choi SJ, Jun SY, et al. 2018. Effects of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus infection. Antimicrob. Agents Chemother. 62. pii: e00731-18.
3 Lu L, Cai L, Jiao N, Zhang R. 2017. Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J. 14(1): 104.   DOI
4 Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. 2015. bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7: 4836-4853.   DOI
5 Khan Shawan MM, Hasan MA, Hossain MM, Hasan MM, Parvin A, Akter S, et al. 2016. Genomics dataset on unclassified published organism (patent US 7547531). Data Brief. 9: 602-605.   DOI
6 Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer rna genes in genomic sequence. Nucleic Acids Res. 25: 955-964.   DOI
7 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI
8 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI
9 Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306.   DOI
10 Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, et al. 2015. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J. Antimicrob. Chemother. 70: 1453-1465.   DOI
11 Won G, Hajam IA, Lee JH. 2017. Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by coexpression of lambda phage holin-endolysin and X174 gene E. Sci. Rep. 7: 45139.   DOI
12 Larpin Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S. 2018. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS One 13: e0192507.   DOI
13 Dong H, Zhu C, Chen J, Ye X, Huang YP. 2015. Antibacterial activity of Stenotrophomonas maltophilia endolysin P28 against both gram-positive and gram-negative bacteria. Front Microbiol. 6: 1299.
14 Chang Y, Kim M, Ryu S. 2017. Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiol. 68: 112-120.   DOI
15 Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. 2013. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillinresistant Staphylococcus aureus. Antimicrob. Agents Chemother. 57: 2743-2750.   DOI
16 Heselpoth RD, Yin Y, Moult J, Nelson DC. 2015. Increasing the stability of the bacteriophage endolysin PlyC using rationale-based FoldX computational modeling. Protein Eng. Des. Sel. 28: 85-92.   DOI
17 Gupta R, Prasad Y. 2011. P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Curr. Microbiol. 63: 39-45.   DOI
18 Filatova LY, Donovan DM, Foster-Frey J, Pugachev VG, Dmitrieva NF, Chubar TA, et al. 2015. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80alpha lysin. Enzyme Microb. Technol. 73-74: 51-58.   DOI
19 Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. 2009. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol. Lett. 294: 52-60.   DOI
20 Cabrita LD, Bottomley SP. 2004. Protein expression and refolding - a practical guide to getting the most out of inclusion bodies, pp. 31-50. In El-Gewely MR (ed.), Biotechnology Annual Review Volume 10., 10th Ed. Elsevier, Amsterdam.
21 Knox J, Uhlemann AC, Lowy FD. 2015. Staphylococcus aureus infections: transmission within households and the community. Trends Microbiol. 23: 437-444.   DOI
22 Argudin MA, Mendoza MC, Rodicio MR. 2010. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel). 2: 1751-1773.   DOI
23 Choi SW, Lee JC, Kim J, Kim JE, Baek MJ, Park SY, et al. 2019. Prevalence and risk factors for positive nasal methicillin-resistant Staphylococcus aureus carriage among orthopedic patients in Korea. J. Clin. Med. 8(5): pii: E631.
24 Hennekinne J-A. 2018. Staphylococcus aureus as a Leading Cause of Foodborne Outbreaks Worldwide, pp. 129-146. In Fetsch A (ed.), Staphylococcus aureus, 1st Ed. Academic Press, Cambridge.
25 Hyeon JY. 2013. A foodborne outbreak of Staphylococcus aureus associated with fried chicken in Republic of Korea. J. Microbiol. Biotechnol. 23: 85-87.   DOI
26 Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa A, et al. 2018. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 69: 43-50.   DOI
27 Lin DM, Koskella B, Lin HC. 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest Pharmacol. Ther. 8: 162-173.   DOI
28 Salmond GP, Fineran PC. 2015. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13: 777-786.   DOI
29 Jasim HN, Hafidh RR, Abdulamir AS. 2018. Formation of therapeutic phage cocktail and endolysin to highly multidrug resistant Acinetobacter baumannii: in vitro and in vivo study. Iran J. Basic Med. Sci. 21: 1100-1108.
30 Zhang L, Li D, Li X, Hu L, Cheng M, Xia F, et al. 2016. LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation. Sci. Rep. 6: 29344.   DOI
31 Jamal M, Bukhari S, Andleeb S, Ali M, Raza S, Nawaz MA, et al. 2019. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol. 59: 123-133.   DOI
32 Wittebole X, De Roock S, Opal SM. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5: 226-235.   DOI
33 Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171.   DOI
34 Schmelcher M, Loessner MJ. 2016. Bacteriophage endolysins: applications for food safety. Curr. Opin. Biotechnol. 37: 76-87.   DOI
35 Trudil D. 2015. Phage lytic enzymes: a history. Virol. Sin. 30: 26-32.   DOI
36 Chang Y, Yoon H, Kang DH, Chang PS, Ryu S. 2017. Endolysin LysSA97 is synergistic with carvacrol in controlling Staphylococcus aureus in foods. Int. J. Food Microbiol. 244: 19-26.   DOI
37 Gu J, Xu W, Lei L, Huang J, Feng X, Sun C, et al. 2011. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 49: 111-117.   DOI
38 Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y. 2016. From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem. Soc. Trans. 44: 123-128.   DOI
39 Abaev I, Foster-Frey J, Korobova O, Shishkova N, Kiseleva N, Kopylov P, et al. 2013. Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lyticdomain secondary translational start site. Appl. Microbiol. Biotechnol. 97: 3449-3456.   DOI
40 Fujiki J, Nakamura T, Furusawa T, Ohno H, Takahashi H, Kitana J, et al. 2018. Characterization of the lytic capability of a lysk-like endolysin, lys-phiSA012, derived from a polyvalent Staphylococcus aureus bacteriophage. Pharmaceuticals (Basel). 11(1). pii: E25.
41 Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. 2018. Recombinant endolysins as potential therapeutics against antibiotic-resistant: current status of research and novel delivery strategies. Clin. Microbiol. Rev. 31: e00071-00017.
42 Sanz-Gaitero M, Keary R, Garcia-Doval C, Coffey A, van Raaij MJ. 2014. Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K. Virol J. 11: 133-133.   DOI