Browse > Article

Inactivation of the Wall-Associated De-N-acetylase (PgdA) of Listeria monocytogenes Results in Greater Susceptibility of the Cells to Induced Autolysis  

Popowska, Magdalena (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University)
Kusio, Monika (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University)
Szymanska, Paulina (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University)
Markiewicz, Zdzislaw (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 932-945 More about this Journal
Abstract
Several species of Gram-positive bacteria have cell wall peptidoglycan (syn. murein) in which not all of the sugar moieties are N-acetylated. This has recently been shown to be a secondary effect, caused by the action of a peptidoglycan N-acetylglucosamine deacetylase. We have found that the opportunistic pathogen Listeria monocytogenes is unusual in having three enzymes with such activity, two of which remain in the cytoplasm. Here, we examine the enzyme (PgdA) that crosses the cytoplasmic membrane and is localized in the cell wall. We purified a hexa-His-tagged form of PgdA to study its activity and constructed a mutant devoid of functional Lmo0415 (PgdA) protein. L. monocytogenes PgdA protein exhibited peptidoglycan N-acetylglucosamine deacetylase activity with natural substrates (peptidoglycan) from both L. monocytogenes and Escherichia coli as well as the peptidoglycan sugar chain component N-acetylglucosamine, but not with N-acetylmuramic acid. As was reported recently [6], inactivation of the structural gene was not lethal for L. monocytogenes nor did it affect growth rate or morphology of the cells. However, the pgdA mutant was more prone to autolysis induced by such agents as Triton X-100 and EDTA, and is more susceptible to the cationic antimicrobial peptides (CAMP) lysozyme and mutanolysin, using either peptidoglycan muramidases or autolysis-inducing agents. The pgdA mutant was also slightly more susceptible than the wild-type strain to the action of certain beta-lactam antibiotics. Our results indicate that protein PgdA plays a protective physiological role for listerial cells.
Keywords
Listeria monocytogenes; peptidoglycan; autolysis; beta-lactams; N-acetylglucosamine deacetylase;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bohne, J., H. Kestler, C. Uebele, Z. Sokolovic, and W. Goebel. 1996. Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol. Microbiol. 20: 1189-1198   DOI   ScienceOn
2 Cossart, P. and M. Lecuit. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actinbased movement: Bacterial factors, cellular ligands and signaling. EMBO J. 17: 3797-3806   DOI   ScienceOn
3 Meyrand, M., A. Boughammoura, P. Courtin, C. M$\acute{e}$zange, A. Guillot, and M. P. Chapot-Chartier. 2007 Peptidoglycan Nacetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology 153: 3275-3285   DOI   ScienceOn
4 Schaferkordt, S. and T. Chakraborty. 1995. Vector plasmid for insertional mutagenesis and directional cloning in Listeria ssp. Biotechniques 19: 720-725   PUBMED   ScienceOn
5 Schmelzer, E., J. Weckesser, R. Warth, and H. Mayer. 1982. Peptidoglycan of Rhodopseudomonas viridis: Partial lack of N-acetyl substitution of glucosamine. J. Bacteriol. 149: 151- 155   PUBMED
6 Srivastava, K. K. and I. H. Siddique. 1978. Quantitative chemical composition of murein of Listeria monocytogenes. Infect. Immun. 7: 700-703
7 Vollmer, W. and A. Tomasz. 2002. Peptidoglycan Nacetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect. Immun. 70: 7176-7178   DOI   ScienceOn
8 Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL Workspace: A Web-based environment for protein structure homology modelling. Bioinformatics 22: 195- 201   DOI   ScienceOn
9 Glauner, B. 1988. Separation and quantification of muropeptides by high performance liquid chromatography. Anal. Biochem. 172: 451-464   DOI   PUBMED   ScienceOn
10 H$\acute{e}$bert, L., P. Courtin, R. Torelli, M. Sanguinetti, M. P. Chapot- Chartier, Y. Auffray, and A. Benachour. 2007. Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infect. Immun. 75: 5390-5398   DOI   ScienceOn
11 Baj, J., I. Grabowska, and Z. Markiewicz. 1992 N-Unsubstituted glucosamine residues and other modifications in murein of the obligatory chemolithotroph Thiobacillus neapolitanus. Res. Microbiol. 143: 47-54   DOI   ScienceOn
12 Cabanes, D., P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10: 238-245   DOI   ScienceOn
13 Hayashi, H., Y. Araki, and E. Ito. 1973. Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme. J. Bacteriol. 113: 592-598   PUBMED
14 Popowska, M. and Z. Markiewicz. 2006. Characterization of protein Lmo0327 of Listeria monocytogenes with murein hydrolase activity. Arch. Microbiol. 186: 69-86   DOI   ScienceOn
15 National Committee for Clinical Laboratory Standards. 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard Fifth Edition. M7- A5: 1-54
16 Boneca, I. G., O. Dussurget, D. Cabanes, M. A. Nahori, S. Sousa, M. Lecuit, et al. 2007. A critical role for peptidoglycan Ndeacetylation in Listeria evasion from the host innate immune system. Proc. Natl. Acad. Sci. U.S.A. 104: 997-1002   DOI   ScienceOn
17 Kopp, J. and T. Schwede. 2004. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucl. Acids Res. 32: D230-D234   DOI   PUBMED   ScienceOn
18 Southwick, F. H. and D. L. Purich. 1996. Intracellular pathogenesis of listeriosis. NEJM 334: 770-776   DOI   ScienceOn
19 Vollmer, W. and A. Tomasz. 2000. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 275: 20496-20501   DOI   ScienceOn
20 Fiedler, F. and G. J. Ruhland. 1987. Structure of Listeria monocytogenes cell walls. Bull. Inst. Pasteur 85: 287-300
21 McLaughlin, J. 1993. Listeriosis and L. monocytogenes. Env. Policy Practice 3: 201-214   ScienceOn
22 Cris$\acute{o}$stomo, M. I., W. Vollmer, A. S. Kharat, S. Inh$\ddot{u}$lsen, F. Gehre, S. Buckenmaier, and A. Tomasz. 2006. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol. Microbiol. 61: 1497-1509   DOI   ScienceOn
23 Pilgrim, S., J. Stritzker, C. Schoen, A. Kolb-Maurer, G. Geginat, M. J. Loessner, I. Gentschev, and W. Goebel. 2003. Bactoinfection of mammalian cells by Listeria monocytogenes: Improvement and mechanism of DNA delivery. Gene Ther. 10: 2036-2045   DOI   ScienceOn
24 Schleifer, K. H. and O. Kandler. 1972. Murein types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477   PUBMED   ScienceOn
25 Thompson, R. J., H. R. Bouwer, D. A. Portnoy, and F. R. Frankel. 1998. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect. Immun. 66: 3552-3561   PUBMED   ScienceOn
26 Vollmer, W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 322: 287-306   DOI   ScienceOn
27 Bera, A., R. Biswas, S. Herbert, and F. Götz. 2006 The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect. Immun. 74: 4598-4604   DOI   ScienceOn
28 Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
29 Bishop, J. L., E. C. Boyle, and B. B. Finlay. 2007. Deception point: Peptidoglycan modification as a means of immune evasion. Proc. Natl. Acad. Sci. U.S.A. 104: 691-692   DOI   ScienceOn
30 Dietrich, G., S. Spreng, D. Favre, J. F. Viret, and C. A. Guzman. 2003. Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Curr. Opin. Mol. Ther. 5: 10-19   PUBMED   ScienceOn
31 Chatterjee, D. 1997. The mycobacterial cell wall: Structure, biosynthesis and sites of drug action. Curr. Opin. Chem. Biol. 1: 579-588   DOI   PUBMED   ScienceOn
32 Dhar, G., K. F. Faull, and O. Scheewind. 2000. Anchor structure of cell wall surface proteins in Listeria monocytogenes. Biochemistry 39: 3725-3733   DOI   ScienceOn
33 Hof, H. 2004. An update on the medical management of listeriosis. Expert Opin. Pharmacother. 5: 1727-1735   DOI   PUBMED   ScienceOn
34 McLaughlan, A. M. and J. Foster. 1998. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology 144: 1359-1367   DOI   ScienceOn
35 Cossart, P. and C. Kocks. 1994. The actin-based motility of the facultative intracellular pathogen. Mol. Microbiol. 13: 395-402   DOI   ScienceOn
36 Kamisango, K., I. Saiki, Y. Tanio, H. Okumura, Y. Araki, I. Sekikawa, I. Azuma, and Y. Yamamura. 1982. Structures and biological activities of mureins of Listeria monocytogenes and Propionibacterium acnes. J. Biochem. 92: 23-33
37 Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL: An automated protein homology-modeling server. Nucl. Acids Res. 31: 3381-3385   DOI   ScienceOn
38 Clarke, A. J. and C. Dupont. 1992. O-Acetylated peptidoglycan: Its occurrence, pathobiological significance, and biosynthesis. Can. J. Microbiol. 38: 85-91   DOI   PUBMED   ScienceOn
39 Park, S. F. and G. S. Stewart. 1990. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillintreated cells. Gene 28: 129-132
40 Stritzker, J., J. Janda, C. Schoen, M. Taupp, S. Pilgrim, I. Gentschev, P. Schreier, G. Geginat, and W. Goebel. 2004. Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect. Immun. 72: 5622-5629   DOI   ScienceOn