Browse > Article
http://dx.doi.org/10.4014/jmb.1611.11004

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents  

Graziani, Ana Claudia (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Stets, Maria Isabel (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Lopes, Ana Luisa Kalb (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Schluga, Pedro Henrique Caires (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Marton, Soledad (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Ferreira, Ieda Mendes (Centro de Desenvolvimento da Tecnologia Nuclear (CDTN))
de Andrade, Antero Silva Ribeiro (Centro de Desenvolvimento da Tecnologia Nuclear (CDTN))
Krieger, Marco Aurelio (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Cardoso, Josiane (Instituto de Biologia Molecular do Parana, Department of Research and Development)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.4, 2017 , pp. 838-843 More about this Journal
Abstract
Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.
Keywords
Anti-peptidoglycan aptamers; bacterial sepsis agents; qPCR assays; biosensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. 2008. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36: 296-327.   DOI
2 Angus DC, Van der Poll, T. 2013. Severe sepsis and septic shock. N. Engl. J. Med. 369: 840-851.   DOI
3 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29: 1303-1310.   DOI
4 Boedicker JQ, Li L, Kline TR, Ismagilov RF. 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab. Chip 8: 1265-1272.   DOI
5 Kaufman D, Fairchild KD. 2004. Clinical microbiologv of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 17: 638-643.   DOI
6 Lee A, Mirrett S, Reller Barth L, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J. Clin. Microbiol. 47: 3546-3548.
7 Lazcka O , Del Campo FJ, M unoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217.   DOI
8 Su L, Jia W, Hou C, Yu L. 2011. Microbial biosensors: a review. Biosens. Bioelectron. 26: 1788-1799.   DOI
9 Ellington AD, S zostak JW. 1 990. In vitro s election of RNA molecules that bind specific ligands. Nature 346: 818-822.   DOI
10 Ferreira IM, De Souza Lacerda CM, De Faria SL, Correa CR, De Andrade ASR. 2014. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl. Biochem. Biotechnol. 174: 2548-2556.   DOI
11 Schleifer KH, Kandler O. 1972. Peptidoglycan. Types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
12 Marton S, Cleto F, Krieger MA, Cardoso J. 2016. Isolation of an aptamer that binds specifically to E. coli. PLoS One 11: e0153637.   DOI
13 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real time quantitative PCR and the $2{\Delta}CT$ method. Methods 25: 402-408.   DOI
14 Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 26: 3175-3182.
15 Amaya E, Caceres M, Fang H, Ramirez AT, Palmgren AC, Nord CE. 2009. Extended-spectrum $\beta$-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit in Leon, Nicaragua. Int. J. Antimicrob. Agents 33: 386-387.   DOI
16 Gray J, Arvelo W, McCracken J, Lopez B, Lessa FC, Kitchel B, et al. 2012. An outbreak of Klebsiella pneumoniae late-onset sepsis in a neonatal intensive care unit in Guatemala. Am. J. Infect. Control 40: 516-520.   DOI
17 Lahmer T, Messer M, Schnappauf C, Schmidt A, Schmid RM, Huber W. 2014. Acinetobacter baumannii sepsis is fatal in medical intensive care unit patients: six cases and review of literature. Anaesth. Intensive Care 42: 541-684.
18 Zakariya BP, Vishnu Bhat B, Harish BN, Arun Babu T, Joseph NM. 2012. Risk factors and outcome of Klebsiella pneumoniae sepsis among newborns. Curr. Pediatr. Res. 16: 115-118.
19 Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. 2005. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 49: 1306-1311.   DOI
20 Richards MJ, Edwards JR, Culver DH, Gayne RP. 1999. Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance System. Crit. Care Med. 27: 887-892.   DOI
21 Patrick M, Kettera M, Guentzela N, Schafferb B, Herzigb M, Wub X, et al. 2014. Severe Acinetobacter baumannii sepsis is associated with elevation of Pentraxin 3. Infect. Immun. 82: 3910-3918.   DOI
22 Xiao Z, Shangguan D, Cao Z, Fang X, Tan W. 2008. Cell-specific internalization study of an aptamer from whole cell selection. Chem. Eur. J. 14: 1769-1775.   DOI
23 Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700.   DOI
24 Lee JF, Stovall GM, Ellington AD. 2006. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10: 282-289.   DOI
25 Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. 32: 287-306.   DOI
26 Bayer ME. 1991. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol 107: 268-280.   DOI
27 Keefe AD, Pai S, Ellington A. 2010. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9: 537-550.   DOI
28 Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. 2013. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3: 1863.   DOI
29 Song S, Wang L, Li J, Zhao J, Fan C. 2008. Aptamer-based biosensors. Trends Anal. Chem. 27: 108-117.   DOI
30 De Pedro M, Cava F. 2015. Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 6: 449.
31 Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249: 505-510.   DOI