DOI QR코드

DOI QR Code

Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal

  • Kim, Chan-Hee (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Park, Ji-Won (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Ha, Nam-Chul (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Kang, Hee-Jung (Department of Laboratory Medicine, Hallym University College of Medicine) ;
  • Lee, Bok-Luel (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University)
  • Accepted : 2008.02.05
  • Published : 2008.02.29

Abstract

The major cell wall components of bacteria are lipopolysaccharide, peptidoglycan, and teichoic acid. These molecules are known to trigger strong innate immune responses in the host. The molecular mechanisms by which the host recognizes the peptidoglycan of Gram-positive bacteria and amplifies this peptidoglycan recognition signals to mount an immune response remain largely unclear. Recent, elegant genetic and biochemical studies are revealing details of the molecular recognition mechanism and the signalling pathways triggered by bacterial peptidoglycan. Here we review recent progress in elucidating the molecular details of peptidoglycan recognition and its signalling pathways in insects. We also attempt to evaluate the importance of this issue for understanding innate immunity.

Keywords

References

  1. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298 https://doi.org/10.1016/S0092-8674(00)80412-2
  2. Medzhitov, R. and Janeway, C. A., Jr. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296, 298-300 https://doi.org/10.1126/science.1068883
  3. Iwanaga, S. and Lee, B. L. (2005) Recent advances in the innate immunity of invertebrate animals. BMB reports (formerly J. Biochem. Mol. Biol.) 38, 128-150 https://doi.org/10.5483/BMBRep.2005.38.2.128
  4. Kanost, M. R., Jiang, H. and Yu, X. Q. (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198, 97-105 https://doi.org/10.1111/j.0105-2896.2004.0121.x
  5. Ferrandon, D., Imler, J. L., Hetru, C. and Hoffmann, J. A. (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862-874 https://doi.org/10.1038/nri2194
  6. Tanji, T., Ohashi-Kobayashi, A. and Natori, S. (2006) Participation of a galactose-specific C-type lectin in Drosophila immunity. Biochem. J. 396, 127-138 https://doi.org/10.1042/BJ20051921
  7. Cerenius, L. and Söderhäll, K. (2004) The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 198, 116-126 https://doi.org/10.1111/j.0105-2896.2004.00116.x
  8. Hillyer, J. F., Schmidt, S. L. and Christensen, B. M. (2003) Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 313, 117-127 https://doi.org/10.1007/s00441-003-0744-y
  9. Cherry, S. and Silverman, N. (2006) Host-pathogen interactions in Drosophila: new tricks from an old friend. Nat. Immunol. 7, 911-917 https://doi.org/10.1038/ni1388
  10. Royet, J., Reichhart, J. M. and Hoffmann, J. A. (2005) Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11-17 https://doi.org/10.1016/j.coi.2004.12.002
  11. Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19 https://doi.org/10.1016/S0952-7915(02)00005-5
  12. Tzou, P., De Gregorio, E. and Lemaitre, B. (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102-110 https://doi.org/10.1016/S1369-5274(02)00294-1
  13. Schleifer, K. H. and Kandler, O. (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407-477
  14. Gupta, D., Kirkland, T. N., Viriyakosol, S. and Dziarski, R. (1996) CD14 is a cell-activating receptor for bacterial peptidoglycan. J. Biol. Chem. 271, 23310-23316 https://doi.org/10.1074/jbc.271.38.23310
  15. Yoshida, H., Kinoshita, K. and Ashida, M. (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854-13860 https://doi.org/10.1074/jbc.271.23.13854
  16. Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W.J., Mengin-Lecreulx, D. and Lemaitre, B. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478-484 https://doi.org/10.1038/ni922
  17. Liu, C., Xu, Z., Gupta, D. and Dziarski, R. (2001) Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686-34694 https://doi.org/10.1074/jbc.M105566200
  18. Kang, D., Liu, G., Lundstrom, A., Gelius, E. and Steiner, H. (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. U. S. A. 95, 10078-10082 https://doi.org/10.1073/pnas.95.17.10078
  19. Bischoff, V., Vignal, C., Boneca, I. G., Michel, T., Hoffmann, J.A. and Royet, J. (2004) Function of the Drosophila patternrecognition receptor PGRP-SD in the detection of Grampositive bacteria. Nat. Immunol. 5, 1175-1180 https://doi.org/10.1038/ni1123
  20. Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 https://doi.org/10.1038/414756a
  21. Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J. A., Ferrandon, D. and Royet, J. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640-644 https://doi.org/10.1038/nature734
  22. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. and Anderson, K. V. (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359-362 https://doi.org/10.1126/science.1070216
  23. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. and Ezekowitz, R. A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644-648 https://doi.org/10.1038/nature735
  24. Takehana, A., Katsuyama, T., Yano, T., Oshima, Y., Takada, H., Aigaki, T. and Kurata, S. (2002) Overexpression of a pattern- recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. U. S. A. 99, 13705-13710 https://doi.org/10.1073/pnas.212301199
  25. Gobert, V., Gottar, M., Matskevich, A. A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302, 2126-2130 https://doi.org/10.1126/science.1085432
  26. Pili-Floury, S., Leulier, F., Takahashi, K., Saigo, K., Samain, E., Ueda, R. and Lemaitre, B. (2004) in vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J. Biol. Chem. 279, 12848-12853 https://doi.org/10.1074/jbc.M313324200
  27. Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743 https://doi.org/10.1146/annurev.immunol.25.022106.141615
  28. Jang, I. H., Chosa, N., Kim, S. H., Nam, H. J., Lemaitre, B., Ochiai, M., Kambris, Z., Brun, S., Hashimoto, C., Ashida, M., Brey, P. T. and Lee, W. J. (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45-55 https://doi.org/10.1016/j.devcel.2005.11.013
  29. Gottar, M., Gobert, V., Matskevich, A. A., Reichhart, J. M., Wang, C., Butt, T. M., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437 https://doi.org/10.1016/j.cell.2006.10.046
  30. Ligoxygakis, P., Pelte, N., Hoffmann, J. A. and Reichhart, J. M. (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114-116 https://doi.org/10.1126/science.1072391
  31. Kambris, Z., Brun, S., Jang, I. H., Nam, H. J., Romeo, Y., Takahashi, K., Lee, W. J., Ueda, R. and Lemaitre, B. (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808-813 https://doi.org/10.1016/j.cub.2006.03.020
  32. Lim, J. H., Kim, M. S., Kim, H. E., Yano, T., Oshima, Y., Aggarwal, K., Goldman, W. E., Silverman, N., Kurata, S. and Oh, B. H. (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286-8295 https://doi.org/10.1074/jbc.M513030200
  33. Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. and Deisenhofer, J. (2006) Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761-1764 https://doi.org/10.1126/science.1123056
  34. Anderson, K. V. (2000) Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13-19 https://doi.org/10.1016/S0952-7915(99)00045-X
  35. Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A. and Reichhart, J. M. (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917-1919 https://doi.org/10.1126/science.285.5435.1917
  36. Kim, C. H., Kim, S. J., Kan, H., Kwon, H. M., Roh, K. B., Jiang, R., Yang, Y., Park, J. W., Lee, H. H., Ha, N. C., Kang, H. J., Nonaka, M., Söderhäll, K. and Lee, B. L. (2008) A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an insect. J. Biol. Chem. in press
  37. Park, J. W., Je, B. R., Piao, S., Inamura, S., Fujimoto, Y., Fukase, K., Kusumoto, S., Söderhäll, K., Ha, N. C. and Lee, B. L. (2006) A synthetic peptidoglycan fragment as a competitive inhibitor of the melanization cascade. J. Biol. Chem. 281, 7747-7755 https://doi.org/10.1074/jbc.M510058200
  38. Park, J. W., Kim, C. H., Kim, J. H., Je, B. R., Roh, K. B., Kim, S. J., Lee, H. H., Ryu, J. H., Lim, J. H., Oh, B. H., Lee, W. J., Ha, N. C. and Lee, B. L. (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc. Natl. Acad. Sci. U. S. A. 104, 6602-6607 https://doi.org/10.1073/pnas.0610924104
  39. Zhang, R., Cho, H. Y., Kim, H. S., Ma, Y. G., Osaki, T., Kawabata, S., Söderhäll, K. and Lee, B. L. (2003) Characterization and properties of a 1,3-beta-D-glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation. J. Biol. Chem. 278, 42072-42079 https://doi.org/10.1074/jbc.M307475200
  40. LeMosy, E. K., Tan, Y. Q. and Hashimoto, C. (2001) Activation of a protease cascade involved in patterning the Drosophila embryo. Proc. Natl. Acad. Sci. U. S. A. 98, 5055-5060 https://doi.org/10.1073/pnas.081026598
  41. Weber, A. N., Tauszig-Delamasure, S., Hoffmann, J. A., Lelievre, E., Gascan, H., Ray, K. P., Morse, M. A., Imler, J. L. and Gay, N. J. (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794-800 https://doi.org/10.1038/ni955
  42. DeLotto, Y. and DeLotto, R. (1998) Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141-148 https://doi.org/10.1016/S0925-4773(98)00024-0
  43. Fujita, T. (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat. Rev. Immunol. 2, 346-353 https://doi.org/10.1038/nri800
  44. Li, S., Norioka, S. and Sakiyama, F. (1998) Bacteriolytic activity and specificity of Achromobacter beta-lytic protease. J. Biochem. (Tokyo) 124, 332-339 https://doi.org/10.1093/oxfordjournals.jbchem.a022116
  45. Muta, T., Seki, N., Takaki, Y., Hashimoto, R., Oda, T., Iwanaga, A., Tokunaga, F. and Iwanaga, S. (1995) Purified horseshoe crab factor G. Reconstitution and characterization of the (1->3)-beta-D-glucan-sensitive serine protease cascade. J. Biol. Chem. 270, 892-897 https://doi.org/10.1074/jbc.270.2.892
  46. Soderhall, K. and Unestam, T. (1979) Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Can. J. Microbiol. 25, 406-414 https://doi.org/10.1139/m79-062
  47. Shockman, G. D., Daneo-Moore, L., Kariyama, R. and Massidda, O. (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb. Drug Resist. 2, 95-98 https://doi.org/10.1089/mdr.1996.2.95
  48. Fukamizo, T., Ikeda, Y., Ohkawa, T. and Goto, S. (1992) 1H-NMR study on the chitotrisaccharide binding to hen egg white lysozyme. Eur. J. Biochem. 210, 351-357 https://doi.org/10.1111/j.1432-1033.1992.tb17428.x
  49. Kawabata, S., Tokunaga, F., Kugi, Y., Motoyama, S., Miura, Y., Hirata, M. and Iwanaga, S. (1996) Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Lett. 398, 146-150 https://doi.org/10.1016/S0014-5793(96)01224-0

Cited by

  1. Dietary plant phenolic improves survival of bacterial infection inManduca sextacaterpillars vol.146, pp.3, 2013, https://doi.org/10.1111/eea.12032
  2. Peptidoglycan recognition proteins in Drosophila immunity vol.42, pp.1, 2014, https://doi.org/10.1016/j.dci.2013.06.006
  3. Strategic Localization of Toll-like Receptor 4 in the Digestive Tract of Blunt Snout Bream (Megalobrama amblycephala) vol.38, pp.6, 2009, https://doi.org/10.1111/j.1439-0264.2009.00950.x
  4. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella vol.98, 2017, https://doi.org/10.1016/j.jinsphys.2017.01.020
  5. Tm SR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor vol.89, 2017, https://doi.org/10.1016/j.ibmb.2017.08.007
  6. Transcriptome of the Plant Virus Vector Graminella nigrifrons, and the Molecular Interactions of Maize fine streak rhabdovirus Transmission vol.7, pp.7, 2012, https://doi.org/10.1371/journal.pone.0040613
  7. Lysozymes in the animal kingdom vol.35, pp.1, 2010, https://doi.org/10.1007/s12038-010-0015-5
  8. Identification of putative innate immune related genes from a cell line of the mosquito Aedes albopictus following bacterial challenge vol.17, pp.1, 2011, https://doi.org/10.1177/1753425909350484
  9. Insect immune responses to nematode parasites vol.27, pp.12, 2011, https://doi.org/10.1016/j.pt.2011.09.001