• Title/Summary/Keyword: graded ring

Search Result 60, Processing Time 0.022 seconds

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh;Darani, Ahmad Yousefian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.559-580
    • /
    • 2017
  • Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

On Graded Quasi-Prime Submodules

  • AL-ZOUBI, KHALDOUN;ABU-DAWWAS, RASHID
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.259-266
    • /
    • 2015
  • Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded quasi-prime submodules and give some basic results about graded quasi-prime submodules of graded modules. Special attention has been paid, when graded modules are graded multiplication, to find extra properties of these submodules. Furthermore, a topology related to graded quasi-prime submodules is introduced.

GRADED PRIMAL SUBMODULES OF GRADED MODULES

  • Darani, Ahmad Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.927-938
    • /
    • 2011
  • Let G be an abelian monoid with identity e. Let R be a G-graded commutative ring, and M a graded R-module. In this paper we first introduce the concept of graded primal submodules of M an give some basic results concerning this class of submodules. Then we characterize the graded primal ideals of the idealization R(+)M.

Results of Graded Local Cohomology Modules with respect to a Pair of Ideals

  • Dehghani-Zadeh, Fatemeh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Let $R ={\oplus}_{n{\in}Z}R_n$ be a graded commutative Noetherian ring and let I be a graded ideal of R and J be an arbitrary ideal. It is shown that the i-th generalized local cohomology module of graded module M with respect to the (I, J), is graded. Also, the asymptotic behaviour of the homogeneous components of $H^i_{I,J}(M)$ is investigated for some i's with a specified property.

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

ON GRADED J-IDEALS OVER GRADED RINGS

  • Tamem Al-Shorman;Malik Bataineh;Ece Yetkin Celikel
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • The goal of this article is to present the graded J-ideals of G-graded rings which are extensions of J-ideals of commutative rings. A graded ideal P of a G-graded ring R is a graded J-ideal if whenever x, y ∈ h(R), if xy ∈ P and x ∉ J(R), then y ∈ P, where h(R) and J(R) denote the set of all homogeneous elements and the Jacobson radical of R, respectively. Several characterizations and properties with supporting examples of the concept of graded J-ideals of graded rings are investigated.

GROUP GRADED TYPES OF BÉZOUT MODULES

  • Ahmed, Mamoon;Moh'D, Fida
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.523-534
    • /
    • 2017
  • In this paper, we introduce two group graded types of $B{\acute{e}}zout$ modules, namely graded-$B{\acute{e}}zout$ modules and weakly graded-$B{\acute{e}}zout$ modules, which are two $B{\acute{e}}zout$ versions in Graded Module Theory. We investigate the relationship among the three types of $B{\acute{e}}zout$ modules, the ordinary $B{\acute{e}}zout$ modules and the two graded types of $B{\acute{e}}zout$ modules. Also, we study the structure of these new $B{\acute{e}}zout$ modules along with different properties; for instance, "A graded-$B{\acute{e}}zout$ R-module, with R being a Noetherian ring, is Noetherien iff it is gr-Noetherian".