• Title/Summary/Keyword: grade 6 mathematics

Search Result 286, Processing Time 0.021 seconds

Identifying a Structural Relationship among Self-Determination, Teaching Presence, Learning Outcomes of Elementary Students in Blended Learning Environment (초등 혼합형학습에서 자기결정성 동기, 교수실재감, 학습성과 간의 구조적 관계 규명)

  • Kang, Myunghee;Park, Namsu;Yoo, Eunjin;Kim, Yuna
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2013
  • The purpose of this study is to investigate a structural relationship among elementary students' self-determinant learning motivation, teaching-presence and learning outcomes (learning satisfaction, persistence) in blended learning environment. Participants were 5th and 6th grade students who enrolled in a mathematics learning service. The results showed that self-determinant learning motivation had direct effect on teaching presence, learning satisfaction and learning persistence. Teaching Presence had an direct effect on learning satisfaction and learning satisfaction had an direct effect on learning persistence. Based on the results, proper strategies were recommended to facilitate self-determinant learning motivation and teaching presence before and during learning since they play critical roles for the success of elementary students learning outcomes in a blended learning environment.

  • PDF

Cognitive process and cognitive load about the concept image of triangle altitude in visual image (시각적 이미지 안에서 삼각형 높이의 개념 이미지에 대한 인지적 처리과정과 인지적 부하)

  • Lee, Mi Jin;Lee, Kwangho
    • Education of Primary School Mathematics
    • /
    • v.20 no.4
    • /
    • pp.305-319
    • /
    • 2017
  • In the process of finding the triangle height, 26 students in the 6th grade were surveyed to understand the students' triangle height through the eye movement data and to investigate the cognitive load of the students. As a result, the correctness rate of the pre-test was significantly increased in the post-test, and the frequency and retention of gaze data were smaller in the post-test than in the AOI of each question. The Participants's subjective cognitive load indicated that it was more difficult to understand the concept of rotated triangles compared with upright triangles that were parallel to the ground. More frequent and more retentions in the eye-tracking data were detected in the right triangles and acute triangles by rotating configuration. Eye movement data show that eye tracking technology can provide an objective measure of students' cognitive load for feedback on instructional design.

A Study on Use of Calculators in the Elementary Math Textbook of U.S. (미국 초등수학교과서의 계산기 활용 실태와 방안에 대한 분석)

  • Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.1-27
    • /
    • 2010
  • This study intends to provide implications about sluggish use of calculators in our case by analyzing the math textbook of U.S. Macmillan/McGraw-Hill along with the tendency of paying more attention to math class using technologies. From the results of analysis, this textbook deals with various methods over around 3.3% of all pages, using calculators across all grades from 1st to 6th grade. In particular, it offers guidance into three types such as 'Choose a Computation Method', 'You can also use a calculator.', and 'TECHNOLOGY LINK', while particularly it is impressive in the perspective of using calculators as one of calculation strategies. And case studies of usage in textbooks describe 8 different perspectives as an example-represent; solve problems or equations; develope or demonstrate conceptual understanding; analyze; compute or estimate; describe, explain or justify; choose appropriate calculation method; determine a calculated answer's reasonableness. Reflecting on the fact that we still use calculators in a passive way, there are considerable implications to us.

A Cross-Cultural Comparison of Academic Attitudes for Gifted Elementary and Middle School Students (청소년기 영재들의 학업 태도에 대한 국제 비교)

  • Moon, Jeong-Hwa;Van Eman, Linnea;Montgomery, Diane
    • Journal of Gifted/Talented Education
    • /
    • v.20 no.3
    • /
    • pp.867-883
    • /
    • 2010
  • Recognizing the importance of motivation, goal orientation, and attitudes toward schools is an important component for educators to consider as they establish positive learning communities for gifted learners. The purpose of this study was to describe attitudes toward school and self relationship to schoolwork for students who are enrolled in the 5th, 6th, and 7th grade, identified as gifted, accelerated in at least one subject (mathematics), and living in Korea or the United States. Comparisons were conducted for country of origin and gender for all subscales on the School Attitude Assessment Survey-Revised (McCoach & Siegle, 2004). Of the 507 participants (278 Korean and 229 American), girls scored higher on the motivation/self-regulation scale than boys and American students scored higher than Korean students on attitudes toward school, academic self perceptions, goal orientation, and motivation. There were no differences by country or gender on attitudes toward teachers.

A case study of elementary school mathematics-integrated classes based on AI Big Ideas for fostering AI thinking (인공지능 사고 함양을 위한 인공지능 빅 아이디어 기반 초등학교 수학 융합 수업 사례연구)

  • Chohee Kim;Hyewon Chang
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.255-272
    • /
    • 2024
  • This study aims to design mathematics-integrated classes that cultivate artificial intelligence (AI) thinking and to analyze students' AI thinking within these classes. To do this, four classes were designed through the integration of the AI4K12 Initiative's AI Big Ideas with the 2015 revised elementary mathematics curriculum. Implementation of three classes took place with 5th and 6th grade elementary school students. Leveraging the computational thinking taxonomy and the AI thinking components, a comprehensive framework for analyzing of AI thinking was established. Using this framework, analysis of students' AI thinking during these classes was conducted based on classroom discourse and supplementary worksheets. The results of the analysis were peer-reviewed by two researchers. The research findings affirm the potential of mathematics-integrated classes in nurturing students' AI thinking and underscore the viability of AI education for elementary school students. The classes, based on AI Big Ideas, facilitated elementary students' understanding of AI concepts and principles, enhanced their grasp of mathematical content elements, and reinforced mathematical process aspects. Furthermore, through activities that maintain structural consistency with previous problem-solving methods while applying them to new problems, the potential for the transfer of AI thinking was evidenced.

Analyzing the Modes of Mathematically Gifted Students' Visualization on the Duality of Regular Polyhedrons (다면체의 쌍대 탐구 과정에서 초등수학영재들이 보여주는 시각화 방법 분석)

  • Lee, Jin Soo;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.2
    • /
    • pp.351-370
    • /
    • 2013
  • The purpose of this study is to analyze the modes of visualization which appears in the process of thinking that mathematically gifted 6th grade students get to understand components of the three-dimensional shapes on the duality of regular polyhedrons, find the duality relation between the relations of such components, and further explore on whether such duality relation comes into existence in other regular polyhedrons. The results identified in this study are as follows: First, as components required for the process of exploring the duality relation of polyhedrons, there exist primary elements such as the number of faces, the number of vertexes, and the number of edges, and secondary elements such as the number of vertexes gathered at the same face and the number of faces gathered at the same vertex. Second, when exploring the duality relation of regular polyhedrons, mathematically gifted students solved the problems by using various modes of spatial visualization. They tried mainly to use visual distinction, dimension conversion, figure-background perception, position perception, ability to create a new thing, pattern transformation, and rearrangement. In this study, by investigating students' reactions which can appear in the process of exploring geometry problems and analyzing such reactions in conjunction with modes of visualization, modes of spatial visualization which are frequently used by a majority of students have been investigated and reactions relating to spatial visualization that a few students creatively used have been examined. Through such various reactions, the students' thinking in exploring three dimensional shapes could be understood.

  • PDF

An Analysis on the Error According to Academic Achievement Level in the Fractional Computation Error of Elementary Sixth Graders (초등학교 6학년 학생이 분수 계산문제에서 보이는 오류의 학업성취수준별 분석)

  • Park, Miyeon;Park, Younghee
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.23-47
    • /
    • 2017
  • The purpose of this study is to analyze the types of errors that may occur in the four arithmetic operations of the fractions after classified according to the level of academic achievement for sixth-grade elementary school student who Learning of the four arithmetic operations of the fountain has been completed. The study was proceed to get the information how change teaching content and method in accordance with the level of academic achievement by looking at the types of errors that can occur in the four arithmetic operations of the fractions. The test paper for checking the type of errors caused by calculation of fractional was developed and gave it to students to test. And we saw the result by error rate and correct rate of fraction that is displayed in accordance with the level of academic achievement. We investigated the characteristics of the type of error in the calculation of the arithmetic operations of fractional that is displayed in accordance with the level of academic achievement. First, in the addition of the fractions, all levels of students showing the highest error rate in the calculation error. Specially, error rate in the calculation of different denominator was higher than the error rate in the calculation of same denominator Second, in the subtraction of the fractions, the high level of students have the highest rate in the calculation error and middle and low level of students have the highest rate in the conceptual error. Third, in the multiplication of the fractions, the high and middle level of students have the highest rate in the calculation error and low level of students have the highest rate in the a reciprocal error. Fourth, in the division of the fractions, all levels of students have the highest r rate in the calculation error.

  • PDF

The Effects of Visual Representations on Learning Proportional Expressions and Distributions (시각적 표현이 비례식과 비례배분 학습에 미치는 효과)

  • Son, Kyunghoon
    • Education of Primary School Mathematics
    • /
    • v.21 no.4
    • /
    • pp.445-459
    • /
    • 2018
  • The purpose of this study is to provide a method to help elementary school students learn ratio-related concepts effectively through visual representations. This study was conducted to identify the differences in the composition of ratio-related concepts between Korean and Singaporean textbooks, reconstruct a unit of proportional expressions and distributions by using visual representations and confirm the differences in performance between an experimental and a comparison group of 6th grade students. While the experimental group mathematics lessons is from the reconstructed textbook, the comparison group lessons is from an existing textbook that does not include any reconstructive representations. A t-test of mean was applied to determine the differences between the experimental and comparison group. Analysis revealed significant differences in the mean between the experimental group and the comparison group, and the intermediate level group showed more improvement compared to the higher and lower level groups. An implication of this study is that the application of visual representations can assist students' understanding of ratio-related concepts.

An Epistemological Inquiry on the Development of Statistical Concepts (통계적 개념 발달에 관한 인식론적 고찰)

  • Lee, Young-Ha;Nam, Joo-Hyun
    • The Mathematical Education
    • /
    • v.44 no.3 s.110
    • /
    • pp.457-475
    • /
    • 2005
  • We have inquired on what the statistical classes of the secondary schools had been aiming to, say the epistermlogical objects. And we now appreciate that the main obstacle to the systematic articulation is the lack of anticipation on what the statistical concepts are. This study focuses on the ingredients of the statistical concepts. Those are to be the ground of the systematic articulation of statistic courses, especially of the one for the school kids. Thus we required that those ingredients must satisfy the followings. i) directly related to the contents of statistics ii) psychologically developing iii) mutually exclusive each other as much as possible iv) exhaustive enough to cover all statistical concepts We examined what and how statisticians had been doing and the various previous views on these. After all we suggest the following three concepts are the core of conceptual developments of statistic, say the concept of distributions, the summarizing ability and the concept of samples. By the concepts of distributions we mean the frequency views on each random categories and that is developing from the count through the probability along ages. Summarizing ability is another important resources to embed his probe with the data set. It is not only viewed as a number but also to be anticipated as one reflecting a random phenomena. Inductive generalization is one of the most hazardous thing. Statistical induction is a scientific way of challenging this and this starts from distinguishing the chance with the inevitable consequences. One's inductive logic grows up along with one's deductive arguments, nevertheless they are different. The concept of samples reflects' one's view on the sample data and the way of compounding one's logic with the data within one's hypothesis. With these three in mind we observed Korean Statistic Curriculum from K to 12. Distributional concepts are dealt with throughout but not sequenced well. The way of summarization has been introduced in the 1 st, 5th, 7th and the 10th grade as a numerical value only. One activity on the concept of sample is given at the 6th grade. And it jumps into the statistical reasoning at the selective courses of ' Mathematics I ' or of ' Probability and Statistics ' in the grades of 11-12. We want to suggest further studies on the developing stages of these three conceptual features so as to obtain a firm basis of successive statistical articulation.

  • PDF

Interpretation of Pre-service Teachers' Knowledge by Shulman-Fischbein Framework : For Students' Errors in Plane Figures (평면도형 영역에서 Shulman-Fischbein 개념틀을 활용한 학생의 오류에 대한 예비 교사의 지식 분석)

  • Kim, Ji Sun
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.297-314
    • /
    • 2018
  • This article aims at providing implication for teacher preparation program through interpreting pre-service teachers' knowledge by using Shulman-Fischbein framework. Shulman-Fischbein framework combines two dimensions (SMK and PCK) from Shulman with three components of mathematical knowledge (algorithmic, formal, and intuitive) from Fischbein, which results in six cells about teachers' knowledge (mathematical algorithmic-, formal-, intuitive- SMK and mathematical algorithmic-, formal-, intuitive- PCK). To accomplish the purpose, five pre-service teachers participated in this research and they performed a series of tasks that were designed to investigate their SMK and PCK with regard to students' misconception in the area of geometry. The analysis revealed that pre-service teachers had fairly strong SMK in that they could solve the problems of tasks and suggest prerequisite knowledge to solve the problems. They tended to emphasize formal aspect of mathematics, especially logic, mathematical rigor, rather than algorithmic and intuitive knowledge. When they analyzed students' misconception, pre-service teachers did not deeply consider the levels of students' thinking in that they asked 4-6 grade students to show abstract and formal thinking. When they suggested instructional strategies to correct students' misconception, pre-service teachers provided superficial answers. In order to enhance their knowledge of students, these findings imply that pre-service teachers need to be provided with opportunity to investigate students' conception and misconception.