• 제목/요약/키워드: geometrical analyses

검색결과 154건 처리시간 0.023초

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.879-914
    • /
    • 2013
  • In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.

조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석 (Geometrical Non-linear Analyses of Tapered Variable-Arc-Length Beam subjected to Combined Load)

  • 이병구;오상진;이태은
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.129-138
    • /
    • 2012
  • 이 연구는 조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석 방법에 관한 연구이다. 보의 좌단은 회전지점이고 우단은 마찰이 없는 활동(滑動)지점으로 지지되어 있어 하중이 작용하면 보의 축방향 길이가 증가하여 평형상태를 이룬다. 조합하중은 회전지점에 작용하는 모멘트 하중과 집중하중을 고려하였다. 보의 단면은 휨 강성이 부재축을 따라 함수적으로 변화하는 변단면으로 선택하였다. 이러한 보의 비선형 거동을 지배하는 연립 미분방정식을 Bernoulli-Euler 보 이론으로 유도하였다. 이 미분방정식을 반복법으로 수치해석하여 보의 정확탄성곡선을 산정하였다. 이 연구의 이론을 검증하기 위하여 실험실 규모의 실험을 실행하였다.

경사 종동력을 받는 변단면 기하 비선형 캔틸레버 기둥의 수치해석 (Geometrical Non-linear Analyses of Tapered Cantilever Column Subjected to Sub-tangential Follower Force)

  • 이병구;오상진;이태은
    • 한국전산구조공학회논문집
    • /
    • 제26권1호
    • /
    • pp.29-38
    • /
    • 2013
  • 이 연구는 자유단에 경사 종동력을 받는 변단면 기하 비선형 캔틸레버 기둥의 수치해석에 관한 연구이다. 기둥의 단면은 휨 강성이 부재축을 따라 함수적으로 변화하는 변단면으로 선택하였다. 이러한 기둥의 정확탄성곡선을 지배하는 미분방정식을 대변형 이론을 이용하여 유도하였다. 이 미분방정식은 자유단 수직변위, 수평변위 및 회전각의 3개의 미지변수를 갖는다. 이 미분방정식을 반복법으로 수치해석하여 기둥의 미지변수와 정확탄성곡선을 산정하였다. 이 연구의 이론을 검증하기 위하여 실험실 규모의 실험을 실행하였다.

채널단면의 기하학적 형상변화에 따른 캔틸레버 적층구조물의 안정성 연구 (Stability of Cantilevered Laminated Composite Structures with Open Channel Section by Geometrical Shape Variations)

  • 박원태;천경식;손병직
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.169-175
    • /
    • 2004
  • 본 연구에서는 채널단면을 갖는 캔틸레버 복합적층 구조물의 안정성에 다루었다. 보다 합리적이고 효율적인 설계의 기초자료를 제시하고자 채널단면의 길이비와 곡절각도 등과 같은 기하학적 형상변화와 화이버의 보강각도에 따른 좌굴거동을 분석하고, 그에 따른 상호작용에 의한 안정성을 파악하였다. 이를 근거로 캔틸레버 복합적층 구조물의 적절한 채널단면 및 복합재료의 적층구조형식 등을 공학적 측면에서 고찰하고 제시하였다.

평면 직렬 메커니즘의 기하학적 속도 및 힘 해석 (Geometrical Velocity and Force Analyses on Planar Serial Mechanisms)

  • 이찬;이재원;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

균열면에 작용하는 내압과 열전달의 영향을 고려한 노즐부의 응력확대계수 해석 (Stress Intensity Factor Analysis of Nozzle Considering Pressure and Heat Transfer on Crack Face)

  • 정민중;김영진;강기주;범현규;표창률
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2252-2258
    • /
    • 2000
  • In order to investigate the effect of nozzle on stress concentration in pressure vessels, three dimensional finite element analyses were performed. The results were compared with those for corresponding two dimensional axisymmetric finite element analyses. A three dimensional finite element model with a surface crack was also designed to evaluate the effect of internal pressure and heat transfer on crack face, and the resulting stress intensity factors from the finite element analyses were compared with those for ASME Sec. XI and Raju-Newman's stress intensity factor solution. As a result, the validity of currently available stress intensity factor solutions for a surface crack was reviewed in the presence of geometrical complexity, heat transfer and internal pressure.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

Theoretical Studies of Geometries of Hexafluoro-1,3-butadiene, Tetrafluoro-1,3-butadiene, and Difluoro-1,3-butadiene Compounds

  • Cho, Han-Gook;Kim, Kang-Woo;Cheong, Byeong-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.452-459
    • /
    • 2004
  • The geometrical structures of various isomers of hexafluoro-1,3-butadiene (HFBD), tetrafluoro-1,3-butadiene (TFBD), and difluoro-1,3-butadiene (DFBD) have been studied theoretically. Natural steric and natural resonance theory (NRT) analyses indicate that the lower energy of skew s-cis conformer of hexafluoro-1,3-butadiene than that of the s-trans conformer is originated from the strong steric repulsions between fluorine atoms particularly in the s-trans conformer. The resonance structures generated by NRT also show that the lone electron pairs of fluorine atoms effectively extend the conjugation, and the large differences in energy among the structural isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene are in part attributed to the differences in the delocalization energies, in addition to the steric repulsion between fluorine atoms. Other interatomic interactions, such as hydrogen bonding, also play important roles in determination of the structures of isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.