Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.4.452

Theoretical Studies of Geometries of Hexafluoro-1,3-butadiene, Tetrafluoro-1,3-butadiene, and Difluoro-1,3-butadiene Compounds  

Cho, Han-Gook (Department of Chemistry, Universtiy of Incheon)
Kim, Kang-Woo (Department of Chemistry, Universtiy of Incheon)
Cheong, Byeong-Seo (Department of Chemistry, Universtiy of Incheon)
Publication Information
Abstract
The geometrical structures of various isomers of hexafluoro-1,3-butadiene (HFBD), tetrafluoro-1,3-butadiene (TFBD), and difluoro-1,3-butadiene (DFBD) have been studied theoretically. Natural steric and natural resonance theory (NRT) analyses indicate that the lower energy of skew s-cis conformer of hexafluoro-1,3-butadiene than that of the s-trans conformer is originated from the strong steric repulsions between fluorine atoms particularly in the s-trans conformer. The resonance structures generated by NRT also show that the lone electron pairs of fluorine atoms effectively extend the conjugation, and the large differences in energy among the structural isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene are in part attributed to the differences in the delocalization energies, in addition to the steric repulsion between fluorine atoms. Other interatomic interactions, such as hydrogen bonding, also play important roles in determination of the structures of isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene.
Keywords
Hexafluorobutadiene; Geometrical structure; Steric interaction; Conjugation; Natural bond orbitals;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Brundle, C. R.; Robin, M. B. J. Am. Chem. Soc. 1970, 92, 5550.   DOI
2 Chang, C. H.; Andreassen, A. L.; Bauer, S. H. J. Org. Chem. 1971,36, 920.   DOI
3 Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 593.   DOI   ScienceOn
4 Conrad, R. M.; Dows, D. A. Spectrochim. Acta 1965, 21, 1039.   DOI   ScienceOn
5 Choudhury, T.; Scheiner, S. J. Mol. Struct. (Theochem.) 1984, 109,373.   DOI   ScienceOn
6 Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput.Chem. 1998, 19, 628.   DOI   ScienceOn
7 Jeffrey, G. A. An Introduction to Hydrogen Bonding; OxfordUniversity Press: New York, 1997; p 92.
8 Cho, H.-G.; Strauss, H. L.; Snyder, R. G. J. Phys. Chem. 1992, 96,5290.   DOI
9 Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem.Phys. 1968, 49, 2592.   DOI
10 Hu, H.-R.; Tian, A.; Wong, N.-B.; Li, W.-K. J. Phys. Chem. A2001, 105, 10372.   DOI   ScienceOn
11 High Performance Computational Chemistry Group, NWChem, AComputational Chemistry Package for Parallel Computers, Version4.1; Pacific Northwest National Laboratory: Richland, WA, 2002.
12 Beaudet, R. A. J. Am. Chem. Soc. 1965, 87, 1390.   DOI
13 Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107, 5406.   DOI   ScienceOn
14 Bach, A.; Lentz, D.; Luger, P.; Messerschmidt, M.; Olesch, C.;Patzschke, M. Angew. Chem. Int. Ed. 2002, 41, 296.   DOI   ScienceOn
15 Becke, A. D. J. Chem. Phys. 1993, 98, 1372.   DOI
16 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres,J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J.A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
17 Craig, N. C.; Neese, C. F.; Nguyen, T. N.; Oertel, C. M.; Pedraza,L.; Chaka, A. M. J. Phys. Chem. A 1999, 103, 6726.   DOI   ScienceOn
18 Wurrey, C. J.; Bucy, W. E.; Durig, J. R. J. Chem. Phys. 1977, 67,2765.   DOI
19 Dixon, D. A. J. Phys. Chem. 1986, 90, 2038.   DOI
20 Foley, M. S. C.; Braden, D. A.; Hudson, B. S.; Zgierski, M. Z. J.Phys. Chem. A 1997, 101, 1455.   DOI   ScienceOn
21 Toth, J. P.; Koster, D. F. Spectrochim. Acta 1975, 31A, 1891.
22 Cheong, B.-S.; Cho, H.-G. J. Phys. Chem. A 1997, 101, 7901.   DOI   ScienceOn
23 Karpfen, A. J. Phys. Chem. A 1999, 103, 2821.   DOI   ScienceOn
24 Servis, K. L.; Roberts, J. D. J. Am. Chem. Soc. 1965, 87, 1339.   DOI
25 Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 610.   DOI   ScienceOn
26 Albright, J. C.; Nielsen, J. R. J. Chem. Phys. 1957, 26, 370.   DOI