Browse > Article
http://dx.doi.org/10.12989/sem.2013.48.6.879

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods  

Rezaiee-Pajand, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad)
Ghalishooyan, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad)
Salehi-Ahmadabad, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad)
Publication Information
Structural Engineering and Mechanics / v.48, no.6, 2013 , pp. 879-914 More about this Journal
Abstract
In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.
Keywords
nonlinear solution techniques; benchmark problems; path-tracing ability; geometrical nonlinear behavior; comparison study; load limit points; snap-back points;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bathe, K.J. Dvorkin, E.N. (1983), "On the automatic solution of nonlinear finite element equations", Comput. Struct., 871-879.
2 Bergan, P.G., Horrigmoe, G., Brakeland, B. and Soreide, T.H. (1978), "Solution techniques for non-linear finite element problems", Int. J. Num. Meth. Eng., 12(11), 1677-1696.   DOI   ScienceOn
3 Cardona, A. and Huespe, A. (1998), "Continuation methods for tracing the equilibrium path in flexible mechanism analysis", Eng. Comput., 15(2), 190-220.   DOI   ScienceOn
4 Chen, H. and Blandford, G.E. (1993), "Work-increment-control method for non-linear analysis", Int. J. Num. Meth. Eng, 36(6), 909-930.   DOI   ScienceOn
5 Clarke, M.J. and Hancock, G.J. (1990), "A study of incremental-iterative strategies for non-linear analyses", Int. J. Num. Meth. Eng, 29(7), 1365-1391.   DOI
6 Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, Volume 2 Advanced Topics, John Wiley & Sons.
7 Eduardo Nobre Lages, G.H.P. (1999), "Nonlinear finite element analysis using an Object-Oriented Philosophy-Application to Beam Elements and to the Cosserat Continuum", Eng. Comput., 15, 73-89.   DOI   ScienceOn
8 Feenstra, P.H. and Schellekens, J.C.J. (1991), "Self-adaptive solution algorithm for a constrained Newton-Raphson method", Delft University of Technology, Department of Civil Engineering, Stevin laboratory- Mechanics & Structures Division, Netherlands.
9 Geers, M.G.D. (1999), "Enhanced solution control for physically and geometrically non-linear problems. Part II-comparative performance analysis", Int. J. Num. Meth. Eng., 46(2), 205-230.   DOI
10 Gorgun, H. and Yilmaz, S. (2012), "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., 44(4), 539-569.   DOI   ScienceOn
11 Harrison, H. (1983), "Elastic post-buckling response of plane frames", Instability and Plastic Collapse of Steel Structures, Ed. Morris, L.J., Granada, 56-65.
12 Huang, B.Z. and Atluri, S.N. (1995), "A simple method to follow post-buckling paths in finite element analysis", Comput. Struct., 57(3), 477-489.   DOI   ScienceOn
13 Hrinda, G.A. (2007), "Geometrically nonlinear static analysis of 3D trusses using the arc-length method", Computational Methods and Experimental Measurements XIII, Prague, Czech Republic, 243-252.
14 Kim, T.H., Cheon, J.H. and Shin, H.M (2009), "Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis", Comput. Concrete, 9(1), 63-79.
15 Koohestani, K. and Kaveh, A. (2010), "Efficient buckling and free vibration analysis of cyclically repeated space truss structures", Finite Elem. Anal. Des., 46(10), 943-948.   DOI   ScienceOn
16 Kuo Mo Hsiao and Fang Yu Hou (1987), "Nonlinear finite element analysis of elastic frames", Comput. Struct., 26(4), 693-701.   DOI   ScienceOn
17 Lee, S., Manuel, F.S. and Rossow, E.C. (1968), "Large deflections and stability of elastic frame", J. Eng. Mech. Div., 94(2), 521-548.
18 Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for large-deformation analysis of laminated shells", Int. J. Num. Meth. Eng., 42(5), 777-798.   DOI   ScienceOn
19 Loganathan, S. (1989), "Geometric and material nonlinear behaviour of space frame structures", Ph.D. Thesis, The University of Queensland.
20 Meek, J.L. and Loganathan, S. (1989), "Large displacement analysis of space-frame structures", Comput. Meth. Appl. Mech. Eng., 72(1), 57-75.   DOI   ScienceOn
21 Meek, J.L. and Xue, Q. (1998), "A study on the instability problem for 3D frames", Comput. Meth. Appl. Mech. Eng., 158(3-4), 235-254.   DOI   ScienceOn
22 Noor, A.K. and Peters, J.M. (1983), "Instability analysis of space trusses", Comput. Meth. Appl. Mech. Eng., 40(2), 199-218.   DOI   ScienceOn
23 Nooshin, H. and Disney P.L. (2000), "Formex configuration processing I", Int. J. Space Struct., 15(1), 1-52.   DOI
24 Powell, G. and Simons, J. (1981), "Improved iteration strategy for nonlinear structures", Int. J. Num. Meth. Eng, 17(10), 1455-1467.   DOI   ScienceOn
25 Ramesh, G. and Krishnamoorthy, C.S. (1994), "Inelastic post-buckling analysis of truss structures by dynamic relaxation method", Int. J. Num. Meth. Eng., 37(21), 3633-3657.   DOI   ScienceOn
26 Rezaiee-Pajand, M., Tatar, M. and Moghaddasie, B. (2009), "Some geometrical bases for incremental-iterative methods", Int. J. Eng., Tran. B: Appl., 22(3), 245-256.
27 Saffari, H., Fadaee, M.J. and Tabatabaei, R. (2008), "Nonlinear analysis of space trusses using modified normal flow algorithm", J. Struct. Eng., 134(6), 998-1005.   DOI   ScienceOn
28 Schellekens, J.C.J., Feenstra, P.H. and de Borst, R. (1992), "A self-adaptive load estimator based on strain energy", Computational Plasticity, Fundamentals and Applications, Eds. Owen, D.R.J., Onate, E. and Hinton, E.. CIMNE, Barcelona, Pineridge Press, 187-198.
29 Schweizerhof, K.H. and Wriggers, P. (1986), "Consistent linearization for path following methods in nonlinear FE analysis", Comput. Meth. Appl. Mech. Eng., 59(3), 261-279.   DOI   ScienceOn
30 Simo, J.C. and Vu-Quoc, L. (1986), "A three-dimensional finite-strain rod model. part II: Computational aspects", Comput. Meth. Appl. Mech. Eng., 58(1), 79-116.   DOI   ScienceOn
31 Surana, K.S. (1982), "Geometrically non-linear formulation for the three dimensional solid-shell transition finite elements", Comput. Struct., 15(5), 549-566.   DOI   ScienceOn
32 Surana, K.S. (1983), "Geometrically nonlinear formulation for the curved shell elements", Int. J. Num. Meth. Eng., 19(4), 581-615.   DOI   ScienceOn
33 Sze, K.Y., Chan, W.K. and Pian, T.H.H. (2002), "An eight-node hybrid-stress solid-shell element for geometric nonlinear analysis of elastic shells", Int. J. Num. Meth. Eng., 55, 853-878.   DOI   ScienceOn
34 Sze, K.Y. and Zheng, S.J. (1999), "A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis", Comput. Mech., 23(5), 448-456.   DOI
35 Sze, K.Y. and Zheng, S.J. (2002), "A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses", Comput. Meth. Appl. Mech. Eng., 191(17-18), 1945-1966.   DOI   ScienceOn
36 Thai, H.T. and Kim, S.E. (2009), "Large deflection inelastic analysis of space trusses using generalized displacement control method", J. Constr. Steel Res., 65(10-11), 1987-1994.   DOI   ScienceOn
37 Williams, F.W. (1964), "An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections", Q. J. Mech. Appl. Math., 17(4), 451-469.   DOI
38 Wood, R.D. and Zienkiewicz, O.C. (1977), "Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells", Comput. Struct., 7(6), 725-735.   DOI   ScienceOn
39 Xu, T., Xiang, T., Zhao, R. and Zhan, Y. (2010), "Nonlinear finite element analysis of circular concrete-filled steel tube structures", Struct. Eng. Mech., 35(3), 315-333.   DOI   ScienceOn
40 Yang, Y.B. and Kuo, S.R. (1994), Theory and Analysis of Nonlinear Framed Structures, Singapore, Prentice Hall.
41 Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116.   DOI
42 Yang, Y.B., Yang, C.T., Chang, T.P. and Chang, P.K. (1997), "Effects of member buckling and yielding on ultimate strengths of space trusses", Eng. Struct., 19(2), 179-191.   DOI   ScienceOn