Analytic solutions of heat conduction during welding which were first found by Resenthal have some restrictions. One of these is that models to which analytic solutions can be applied must have simple geometric shape, and another is that quasi-stationary state must be created. On the other hand, computational methods developed recently with the aid of the computer can overcome these shortcomings, but the methods raise problems from economic point of view when they are applied to 3 dimensional problems. Taking account of these problems, a new method combinig the analytic method with the computational one is proposed. This method can be ued in weldments with complicated geometric shape in non-stationary state, but with the aid of the analytic method can reduce the computing time.
KUMAR, N. KISHORE;BISWAS, PANKAJ;REDDY, B. SESHADRI
Journal of applied mathematics & informatics
/
제38권3_4호
/
pp.311-334
/
2020
The solution of the elliptic partial differential equation has interface singularity at the points which are either the intersections of interfaces or the intersections of interfaces with the boundary of the domain. The singularities that arises in the elliptic interface problems are very complex. In this article we propose an exponentially accurate nonconforming spectral element method for these problems based on [7, 18]. A geometric mesh is used in the neighbourhood of the singularities and the auxiliary map of the form z = ln ξ is introduced to remove the singularities. The method is essentially a least-squares method and the solution can be obtained by solving the normal equations using the preconditioned conjugate gradient method (PCGM) without computing the mass and stiffness matrices. Numerical examples are presented to show the exponential accuracy of the method.
일반적으로 이산적 입지 공간에서 경쟁적 입지 문제는 입지 후보지에 따라 수많은 조합의 경우가 발생하는 의사결정 문제이기 때문에, 수리적으로 계산하기가 쉽지 않다. 따라서 본 연구에서는 결정적 배분 형태를 가정한 이산적 입지 공간의 경쟁적 입지 문제를 보다 효율적으로 해결하기 위한 대안적 방법에 대해 논의한다. 제안된 방법론의 핵심은 입지 문제의 크기와 관련되는 잠재적 입지후보지의 개수를 기하학적 개념을 이용하여 줄이는 것이다. 사례 분석으로 경쟁이 가열화되고 있는 초고속 인터넷 시장을 대상으로 제안된 방법론을 적용하였는데 두 가지 다른 크기의 문제, 즉 연구 지역 전체에 대해 정의된 잠재적 입지 후보지와 GIS 기반의 기하학적 알고리즘에 의해 추출된 보다 적은 수의 잠재적 입지 후보지에 대해 계산 결과와 공간적 배열을 비교하였다. 사례 분석 결과, 두 문제 모두 고객 유치를 최대화시키는 동일한 최적 입지를 보여주는 한편, 적은 수의 잠재적 입지 후보지를 가진 경쟁적 입지 모델이 보다 효율적으로 해결될 수 있었다.
This paper deals with the possible problems which may arise when students learn the names of elementary geometric figures in the languages of Korean, Chinese, English. The names of some simple geometric figures in these languages are analyzed, and a specially designed test was administered to some grade eight students from the three language groups to explore the possible influence of the characteristics of the languages on students' capability in identifying the figures, the way students define the figures, and students' understanding of the inclusive relationship among figures. It was found that the usage of the terms to describe geometric figures may indeed have affected students' understanding of the figures. The names of geometric figures borrowed from those of everyday life objects may cause students to fix on some attributes of the objects which may not be consistent with the definition of the figures. Even when the names of the geometric figures depict the features of the figures, the words used in the naming of the figures may still affect students' understanding of the inclusive relations. If there is discrepancy between the definition of a geometric figure and the features that the name depicts, it may affect students' understanding of the definition of the figure, and if there is inconsistency in the classification of figures, it may affect students' understanding of the inclusive relationship involving those figures. Some implications of the study are then discussed.
This study started with the following questions. Suppose that students do not accept various forms of geometric series tasks as the same task. Also, let's say that the approach was different for each task. Then, when they realize that they are the same task, how will students connect the different approaches? This study is a process of pro-actively confirming whether or not such a question can be made. For this purpose, three students in the second grade of high school participated in the teaching experiment. The results of this study are as follows. It also confirmed how the students think about the various types of tasks in the geometric series. For example, students have stated that the value is 1 in a series type of task. However, in the case of the 0.999... type of task, the value is expressed as less than 1. At this time, we examined only mathematical expressions of students approaching each task. The problem of reachability was not encountered because the task represented by the series symbol approaches the problem solved by procedural calculation. However, in the 0.999... type of task, a variety of expressions were observed that revealed problems with reachability. The analysis of students' expressions related to geometric series can provide important information for infinite concepts and limit conceptual research. The problems of this study may be discussed through related studies. Perhaps more advanced research may be based on the results of this study. Through these discussions, I expect that the contents of infinity in the school field will not be forced unilaterally because there is no mathematical error, but it will be an opportunity for students to think about the learning method in a natural way.
In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.
최근 수학교육에서 펜토미노와 같은 절단 퍼즐들을 학습에 많이 활용하고 있다. 그러나 이런 퍼즐들의 개발 배경과 수학적 활용 방법에 대한 연구 부족으로 수학적 개념 도입이나 문제해결을 위한 소재로서 다양하게 사용되고 있지 못한 실정이다. 이 논문은 펜토미노를 수학 학습에서 효과적으로 활용하기 위하여 펜토미노와 같은 절단 퍼즐의 배경이 되는 기하학적 문제와 펜토미노의 개발에 관한 수학사적 배경을 알아보고, 제 7차 초등학교 교육과정의 수학 교과서에서 활용할 수 있는 단원과 여러 문헌에서 펜토미노를 활동한 자료를 조사하여 체계적인 수학 학습자료를 개발하는 기초 자료와 방향을 제시하는 데 그 목적이 있다.
This article dealt with two approaches, algebraic and geometric approaches in terms of Pythagoreans theorem. As mathematics evolves, many theorems had been developed beginning with geometric approaches. However, the algebraic techniques that survive these days are so powerful and generalized in school curriculum. So, if students have more chances to see mathematical properties in geometrical ways, they can experience how beautiful and meaningful they are through the process of the advent of them. Also, it was to try to develop an insight into their applications to other problems.
We introduce the resistant length and examine its properties. We also consider the geometric applications of resistant length to the boundary behavior of analytic functions, conformal mappings and derive the theorem in connection with the fundamental sequences, purely geometric problems. The method of resistant length leads a simple proofs of theorems. So it shows us the usefulness of the method of resistant length.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.