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APPLICATION OF CONVOLUTION OPERATORS TO
SOME PROBLEMS IN GEOMETRIC FUNCTION THEORY

SUK YOUNG LEE

1. Introduction

Let A denote the class of analytic functions 1 (z) in the unit disk E=
{z: Izl<1} with 1(0)=0, 1'(0)=1. We denote by S the subclass of
A consisting of univalent functions. Let K, S*, C and Sp be the standard
subclasses of S consisting of the convex, starlike, close-to-convex, and
spirallike functions, respectively.

00 00

Let 1 and g be in A with I(z) = "£ anzn and g(z) = "£bnzn. We de·
#=0 n=O

fine the convolution operator r : A~ A by r (g) =1*g for given lE
00

A, where (f*g) (z) = "£ anbnzn. Let h be a convex function in E. It is
11=0

known that if 1 is in K, S* or C, then h*! is in K, S* or C, respectively.
Let rj, 0:::;;i:::;;4, be the linear operator defined on A by the equation

below.

Fo/(z) =zl'(z), rd(z) = [/(z) +zf'(z)J/2

Fd(z) =f: I(~) ~/(O) d~, rd(z) =; S:/(~)d'

F4!(z)=f" I(~)-/(x~) d~, [xl :::;;1,x=F1.
o ~-xZ;:

Each of these operators can be written as a convolution operator given
by r;j=hj*l, O:::;;i:::;;4 where

ho(z) = ~ nzn= z h (z) _ ~ n+ 1·zn - z-z2/2
~ (1-z)2' 1 - !=i-2- - (1-Z)2

h2(z) = i; l..zn= -log(1-z), h
3
(z) = i; 2 zn = -2[z+log(1-z) ]

0=1 n 0=1 n+1 z
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00 1- x" 1 [ 1-xz ]
h4 (z) = ~ (l-x)n z"= I-x log 1-z ' Ix] :::;;1, x:;l::l.

For a given compact subclass X of A let rsCXJ denote the minimum
radius of univalence over all functions f in X. We use the corresponding
notation for the other subclasses of S. For example rs*[XJ denotes the
minimum radius of starIikeness over all functions f in X. Robinson
observed that for any f in S, the derivative of Ftf(z) does not vanish
for Iz I<1/2. He also noted that for the standard Koebe function
k(z)=z(1-z)-2, rs[rl (k)J=1/2. He conjectured that rx[rl (X)]=1/2
for X=S. Although 1/2 has been verified to be the correct radius when
Xis replaced by many of the subclasses of S, Robinson's lower bound
of. 38 for rs [FI(S)J has not been improved until to 1978. A straight­
forward argument using convolution techniques and Krzyz's result deter.
mining re(S) can be used to show that rs[rl(S)J>. 417. Barnard [2J
has proved in 1978 that

. 49<rscrI (S)J :::;;. 50.

The classical results of Alexander show that

rs*[Fo(S)] =rs*CFo(S*)J =2- v'3,
and Livingston [14J proved that

rK[F1(K)J =rs*CFI (S*)J =re[rl (C) J=1/2.

Generalizations of these results have been given by Libera and Livinston
in [13J and by Bernardi in [4J. It has been shown by Causey and
others that rcCF2(C)J=l. Libera [12J showed that

rKcr3(K)] =rs* [F3 (S*) J=rc[r3 (C) J=1

and these results have been generalized by Bernardi in [3]. Pommerenke
[18J has shown that re[F4 (C)J=1.

It is not difficult to find the radius of convexity of each of the functions
hi, O:::;;i:::;;4, previously defined, that is, rK[hoJ=2- v'3, rK[hl]=1/2
and

rK[h2J=rK[h3J =rKCh4J=l.

It is known that if f is in K,S*, or C then rJ=hi*f is convex,
starlike or close to convex, respectively, up to rK[hiJ for each i,
0~i~4.

=
For a given a, a<l, a function fez) =z+ I: a"z" is said to be

,,=2

in the class of functions starlike of order a, denoted by d a, if
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Re z'/(z)!f(z»a (zEE). If O~a<l, then dacS. The function

sa(z) = (1-~2(l a)

is the well known extremal function for the class d a • Letting
•

(1.1) C(a, n) =D2 (k-2a) (n=2, 3, ... ),
(n-l) !

00

Sa can be written in the form sa(z) =z+ I:: C(a, n)z"
.=2

A function 1 in A is said to be in the class of functions convex of

order a, denoted by IXa, if Re {1+ Z!"(~))} >a (zEE). For O~a<l,

IXacS. Also it is well known that IEIXa if and only if so*l=zl'(z)
Eda •

00

A function ! (z) = z + I:: a"zn E A is said to be in the class of fune-
_=2

tions prestarlike of order a (a<I), denoted by O2a, if l*saEda' It is
shown in [31J that O2acS if and only if a~I/2. For convenience,
we introduce the notation sa-1(z) for the function normalized by Sa-1 (0)
=0 with (Sa-1*Sa)(z) =z/ (l-z). Thus

00

Sa-1(z) = z+ I:: (I/C(a, n)z",
.::;;2

where the C(a, n) are given by (1.1). With this notation, we observe
that Sa-l*gE02a for all gEda•

The family O2a was introduced in [33J where it was shown that

(1. 2) O2ac02p

for a<13<I, and

(1. 3) !*gE(}(a

for I, g E O2a •

In this paper, we are able to generalize previously known results and
obtain some results including a verification of Robinson's 1/2 conjecture
in the case of spirallike functions in Section 2. In Section 3, we give
a generalization of Bernardi's result. Throughout Bernardi's paper [4J,
he considered c a positive integer. We shall consider c a complex
number with c =/= -1. Moreover, we obtain a generalization of Burdick,
keogh and Merkes results by using convolution technique.
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In Section 4, we are concerned with two generalizations of the class
O<a. We define the new classes <:R(a, (3) and Q(a, (3) and discuss their
relationship to each other and to the class <:Ra. We obtain the necessary
and sufficient conditions for inclusion in the new classes.

2. Preparatory lemmas and its applications

The following simple lemma [26J is applied usefully ill this paper.

LEMMA 1. Suppose ifJ, g are analytic in Iz I<1 and that

ifJ(z) * 11+xz g(z) *0
-yz

for Ixl=IYI=l, Izl<1. Then if FEA and Re F>O,

(2.1) Re ifJ*gF >0.
ifJ*g

Proof. When x=-y we obtain ifJ*g:::l=-O, and by simple manipulations
we obtain for Ixl :::;;1, Iyl =1

ifJ(z)*1
1

+ yzg (z) - 1
__.,.-;:...~y=z~_*xy-

ifJ(z)*g(z) xji+1

and hence (2.1) holds for F(z) = (l+yz)/(l-yz). If Re F>O we
have by Herglotz's theorem

F(z)=f 1
1

+
yz

dfJ.(y) +ic
Iyl =1 -yz

where fJ. is a positive measure on the unit circle Iy I= 1 and c is a real
constant. Hence

Re ifJ*gF =f ifJ(z) * i~;: g(z)
ifJ*g Re ifJ() () dfJ.>O.

lyl~1 z *gz

We shall need the slightly more general version of the key lemma as
follows:

LEMMA 2. Let ifJ and g be analytic in lz I<1 with ifJ(O) =g(O) =0 and

ifJ' (O)g' (0) *0. Suppose that for each a (lal=l) and (1 (1(11=1) we
have

(2.2) [ifJ*(\~a::)gJ(z)*O on O<lzl<r~1.
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Then for each F in A the image of Izl<r under (ep*Fg)/(ep*g) is
a subset of the convex hull of F(E).

Proof. Since ep(z)*[(l+aO'z)/ (l-O'z)]g(z) 4=0 for O<lzl <r:(;l is
equivalent to ep(rz)*[(l+aO'z)/(l-O'z)]g(z) 4=0 for O<lzl<l we can
assume r=l. By Lemma 1, if F has positive real part and (2.2) is
satisfied then Rel[(ep*gF)/(ep*g)](z)}>O for z in E. For arbitrary
F in A the convex hull of F(E) is defined to be the total intersection
of all half planes containing F(E). If we denote by F(E) the closure
of F(E) then a line of support I of F(E) is the boundary of a half
plane containing F(E) such that Bl=1 n F(E) 4=0. For a given support
line I let b be a point in Bl. Then there exists an a such that the
half plane defined by the set le- ia[(l+z)/(l-z)]+b: zEE} contains
F(E). For this a and b, if F1 is defined by F1 (z) =eia[F(z) -b] for
z in E we have that Re F j (z»O for z in E. Thus we can apply the
Lemma 1 to F I to obtain

Re{ep*gF1 (z)}=Re{eia ep*gF (z)-b}>O zEE.
ep*g ep*g ,

Therefore, for each z in E we have that [(ep*gF) / (ep*g) ] (z) lies in the
appropriate half-plane for each support line I of F(E). Hence, it
follows that

[ep*gF) / (ep*g)] (E)

lies in the convex hull of F(E) as claimed.

Robinson's 1/2 conjecture is valid when X is replaced by K, s* or C
simply because rK[h1] =1/2. We shall now prove that X can also be
replaced by Sp the class of spirallike functions. However, the result
does not follow directly from the convexity of hI up to 1/2 because,
unlike K, S*, and C, Sp is not preserved under convolution with convex
functions. We shall, however, still be able to obtain the result using
convolution techniques by going directly to Lemma 2. We shall need
the following lemma.

LEMMA 3. Let f be in Sand F(z)=l+alz+··· be regular in E.
Then, the image of Izl<1/2 under (hl*fF)/(hl*f) is a subset of the
convex hull of F(E).

Proof. This result follows from Lemma 2 upon showing that for all
a and 0', (lal=IO'I=l),



222 Suk Young Lee

hI(z)* {[f(z)J[(l+a(Jz)/(l-o-z)]} =H(z) *0 for O<lzl <1/2.
From the definition of hI we see that

2H(z)=(1+ao-z)f(z)[1+ z1'(z) + (l+a)O'z J.
l-(JZ f (z) (1-o-z) (1+aO'z)

Since f is in S, if we put C=o-z, it is sufficient to show that for all
a(lal =1)

zf'(z) (1 +a)C
1+ fez) + (1-0 (l +aC) *0

for Iz I, I<: I<112. We note that since f is in S we have that

Ilog {[zf'(z)]/f(z)} Islog[(l+r)/(l-r)J for Izl Sr.

Let r=1/2. We then have that

\log {[zf' (z) JI f (z)} I slog 3 for Iz I s1/2.

Now, we claim that 11+ew l:24/3 if Iwl<log3. To verify this, it
clearly suffices to consider w= - pe iO for 0 in (-71:,71:] and p>O, and note
that

11 +ew 12= 1+e-2pcoso+2[cos (psinO) ]e-pcoso

It is clear that the replacement of 0 by -0 does not change the above
expression and thus it suffices to consider 0sOs 71:. Letting h (p, () = 11
+ew 12, we see that

~~ = 2pe-2pcosO[sinO+sin (0- psinO)ePcosoJ.

It now follows that 'iJh/'iJ0:20 and therefore

11+ew I 2 :2h(p,O)= 11+e-p I 2 :2(4/3)2

and the claim follows. We now have that 11+zf'(z)lJ(z) 1>4/3 for
Izl <1/2. Lemma 3 will follow upon showing that for all a, (la/ =1),

(1 +a)<: 4
(2.3) (l-l;) (1+aC) <3

provided ICI<1/2. Inequality (2.3) will follow from our next lemma
which will be used later in this paper.

LEMMA 4. For lal=l, let fa(z)=[(l+a)zJ/[(l-z)(l+az)]. If

Izl <r<l, then Ifa(z) I<2r/(l-r2).

Proof. Write a=e2 i 'fJ, -7I:/2<<p<7I:/2 and z=re iO• If we put t={)+cp
we see that
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_ r(e-i9l+ei~)eit

fa(z)-l+reit(ei9l-e ig»_r2e2it

_ 2rcoscp
- (1-r2)cost+i[2rsincp- (1 +r2)sint}

Now,

I (1-r2)cost+i[2rsincp- (1+r2)sintJ 12

= (1-r2)2+4r2sin 2t-4r(1+r2) sincp sint +4r2sin2 cp

=4r2[sint - (1;r
2
) sincpT+ (1-r2)2cos2cp

:::::: (l-r2)2cos2cp

It now follows that Ifa(z) I ~2r/ (1-r2).

With these results we can now prove that Robinson's conjecture is valid
when S is replaced by S p.

THEOREM 2.1. The minimum radius of spirallikeness over all functions
of the form 1/2 [fez) +zf'(z)J far fez) ESp is 1/2. That is,
rsp[r I (Sp) J= 1/2.

Proof. Since f is in Sp there exists a real r such that H(z)=
. eirzj'(z) /f(z) has positive real part in E. To show that rd=hl*f IS

spirallike in Iz I<1/2 we define HI by

HI (z) = [eirhl*zj' (z) J/ [h1*f(z)J= [hl*f(z)H(z) J/ [hl*f(z) J.
Then Lemma 3 assures that HI [I % 1<1/2J is contained in the convex
hull of H (E) . The· result follows by noting that k(z) = z (1-z) -2 is
spirallike for r=O, 'and the radius of spirallikeness of rl[kJ is 1/2.

By using Lemma 2, we give another proof of Livingston's result given
in [14, p.356J.

THEOREM 2.2. Let K1 be the class of functions f in S for which Re
f'(z»O for %EE. Then rK.[rI(K1)J=( vS -1)/2=ro

Proof. Since

(hI*f)' (%) = [hI (z) *zf' (z) J/z= [hI (%) *%f' (z) J/ [hI (z) *zJ
we need only show that Re {[hI (z) *zj' (z) J/ [hI (z) *zJ} >0 for Iz I<ro.
By Lemma 2 it suffices to show that

H(z) =h1 (z)*z(1 +aO'z)/ (l-O'z) *0 for O<lzl <ro, la 1= 10'1 =1.

However, from the definition of hI we have that
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2H (z)c= 1+ao-z 2z+ (1+a)o-z2 1+aoz [2+ (1+a)oz ]
l-oz (1-oz)2 Z l-oz (l-oz)(l +aoz)

By using Lemma 4, we obtain

1
2+ (l-~zrr{~:oz) I~2-1 (l-~zrr{~:oz) I~2-2r/ (1-r

2
»0,

O~r<ro

The result then follows by considering the function

f1(z) = -210g(l-z) -z,

which shows that the result is sharp.

Let T be Rogosinski's class of typically real functions on E, noting
that functions in T need not be univalent. Let Cl be Robertson's class
of functions in T that have their images convex in the direction of the
imaginary axis. (see [19J). Recall Fejer's observation that h is in Cl
if and only if zh' is in T. We include a new proof of Robertson's result
in [20J showing that T is invariant under convolution with functions in
Cl' We then give a corollary showing its application to Robinson's 1/2
conjecture. Let P be the class of functions p analytic in E which have
positive real part and are normalized by p(O) = l.

THEOREM 2.3. If h is in Cl and f is in T then h*! is in T.

Proof. It is a standard result that f is in T if and only if fez) =
z(1-Z2)-lp(z), where p is in P and has real coefficients. Also, for any
function g in T, there exists a nondecreasing function flg on [0, n-] with
flg(n-) - flg(O) =1r and such that

g(z) = ; J: 1-2zC:st+z2 dflg(t).

For each t in [0, n-] the function gt defined by

zgt'(z) =z(1-2zcost+z2)-1, g(O) =0,

is convex because zg/ is starlike. Thus, for t and s in [0, n-J,

g(z, s, t) =zg/ (z) *gt(z)

is starlike and has real coefficients so that g(z, t, s) is in T. Hence
g(z, s, t) =z(1-Z2)-lp(Z, s, t) where p is in P. By using these facts and
the properties of convolution, we obtain for h in Cl that
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1 J" r" de=1i" ozh'(z)*Jo 1-2ecost+C2 d,uj(t)

= ~ S: ~ [S: 1-2z:08S+Z2 d,u",., (s) }gt(z)d,uj(t)

= 12S"S" zg/ (z) *gt(Z)d,u"h' (s)d,uj(t)
1C 0 0

= 1 z z2 ;2S:S:P (z,s,t)d,u"h,(s)dp/(t)= 1~z2Pl(Z)

where Pt has real coefficients and is in P from the properties of P"h' and
,uj. Thus, from the characterization of T the theorem is proved.

COROLLARY. If f is in S and has real coefficients then h1*f is typically
real for Iz 1<1/2.

Proof. This follows from Theorem 2.3 since rK[h1J =rc[ [hI] = 1/2
and any function in S with real coefficients is in T.

3. Generalization of Bernardi's and Burdick's results

We now give a generalization of Bernardi's results in [4J. Throughout
Bernardi's paper he considered c a positive integer. We shall consider
c a complex number with c* -1. In each case when c is considered a
positive integer we obtain Bernardi's results. We define he by

k ( )-;. n+c n z-[c/(1+c)Jz 2

e
Z
-~l+cz (1-z)2

For f in A let the operator re: A~ A be defined by Fe(f) =he*f.

THEOREM 3.1. (i) If Re {cl >0 then rcCFe(K)J=1.

(ii) If

(3.1) R {}> 41"-1-r2

e c 1-r2

and f is in K, S* or C then he*f is convex, starlike, or close-to-convex,
respectively, for Iz I<r. If c is real and greater than -1 then

(3.2) rKCFe(K) J=rs*[Fe(S*) J=rcCFc(C) J=ro

where ro= {2-(3+c2)I/2} /(l-c) for c*l and for c=l, ro=1/2.

(iii) If

(3.3) Ic+11>2r/ (l-rZ)
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and f is in Kt. then Re {(he*f)'(z)} >0 for Izl <r. If c is real and
greater than -1, then rKJre(K1)]=rl where rl=[-1+ (2+2c+c2) 112]/
(l+c).

Proof. Part (i) follows by the fact that he is in C if and only if
Ic/o+e)-1/2\ ~1/2 which is equivalent to Re{c}>O.

The first part of (ii) will follow by showing that whenever inequality
(3.1) holds then r~rK[he]. Consider, for k(z)=z/(I-z)2, that

(3.4) 1+ zhe; (z) he*hk (z) he*k[ (hk) / k] (z).
he (z) he*k he*k

Since (hk)/k(z)=(l+z)/(I-z), Lemma 2 assures that the term on
the right hand side of inequality (3.1) has positive real part whenever

(3.5) he*[k(l+aC1z)/(I-o-z)J*O for all a, 0-, lal=lo-l=l
and 0< Iz I<r. Thus we need only show that this r is determined by
the condition (3.1). From the definition of he and the comparison of
their corresponding Taylor series we have that

(3.6) h*k 1+ aO'zz=:_1_k 1+aoz[c+%k' + (1+a)oz ]
e l-o-z 1+c l-az k (1-(1z) (1 +aoz)

Thus, it suffices to show that the bracketed term in (3. 6) is nonzero for
Izl <r determined by (3.1). From the definition of k(z) and Lemma 4
we have that

c+%k'(z) + (l+a)oz *0
k(z) (1-oz)(1 +aO'z)

whenever Re {c+(1+z)/(I-z)}>2r/(I-r2). This holds when

(3. 7) R {} > 2r 1-r 4r-1- r2

e c l-r2 -l+r l-r2

as claimed. For real c> -1, (3.7) is equivalent to c+ 1-4r+ (1-c)r2

>0, which holds whenever O~r<ro. In order to complete the verifica­
tion of (3.2) we consider the cases of sharpness. For the convex case
we convolute he(z) with zl (l-z) to obtain

1+ zhc" (z) (1 +c) +4z+ (1-C)Z2 J(z).
hc'(z) (1-z)[(1+c)+(1-c)zJ

It easily follows that J( -ro) =0. For the starlike and close-to-convex
case we convolute he with k(z) to obtain
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z(hc*k)' 1+ zhc"(z) J(z).
hc*k he' (z)

So that again J( -ro) =0. Since for c=l, h,*I=k1*I=FJ!, the case
c= 1 follows from our previous results.

We prove (iii) by noting as before that

(h,*f)'(z) = h,(z)*zl'(z)
h,(z) *z

Since I is in Kl> Lemma 2 assures that Re {(hc*I)'} >0 whenever

(3.8) h,*[z(l+aO"z) 1(1-uz)]:t=O, 1«1=10"1=1

and O<lzl <r. We need only show that this r is determined by condi·
tion (3.3). We have

h *z 1+«O"z 1+aO"z [1 +c+ (1 +«)O"Z J_z-
, 1-O"z l-O"z (l-O"z) (1+«O"z) l+c

Thus applying Lemma 4, we have that inequality (3.8) holds whenever
inequality (3.3) holds as claimed. For c>-l, inequality (3.3) is equi·
valent to

Iz 1<rl= [ -1+ (2+2c+c2)1I2]1 (1 +c)

That rl=rKl[Fc(K1)] follows by convoluting hc(z) with!I(z)=-z-2Iog
(1-z) to obtain

(hc*ll)' (z) = [(1 +c) +2z- (1 +c)z2JI (1-z)2=g(z)

where g(-rl) =0.

Another type of problem to which we can apply convolution techniques
is the following: Let G(z)=-/(-z)I/(z) and F(z)=/'(-z)//'(z).
In [8J Burdick, Keogh, and Merkes determined the smallest« and fJ
such that Re {G(z)} a>o and Re {F(z)} ,9>0, z in E, for I in K, S*
and C. Noting that

G(z) = [I (z) *zl (1 +z) J/ [I (z) *zl (l-z)J

and that F(z)=[k(z)*/(z)*z/(l+z)]/[k(z)*/(z)*z/(l-z)J we obtain
the following generalizations of their work. Given fJ, O~fJ<l, let

S*(fJ) = {rES: Re[zl'(z)//(z)J>fJ,zEE}.

LLMMA 5. 11 / is in S* (fJ) then

(3.9) Re{[/(z)*zl(1+z)J//(z)}1I2<l-P»0, zEE.

The result is sharp.
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Proof. This lemma follows readily from the Herglotz representation
for functions in s* (m. Since f is in s* (fJ) there exists a probability
measure f.t such that

log[f (z) Iz] =2(1-,8)I:,.log(l-zeit)df.t(t),

Thus we obtain

-ji~z) exp[2(1-fJ)I:,.log ~~::::df.t(t)J.

and the result follows. The sharpness follows by considering

f(z)=kp(z)-z(1-z)2<P-v, where kp(z)= (l-:iPZ)2.

THEOREM 3. 2. If f is in C then

(3.10) Re{[ kp(z) *f(z) *z/ (I +z) J1I2<2-P)} > zEE.
kp(z) *f(z) ,

The result is sharp.

Proof· Let Kp(z) = f: (kp(C:) /t;:)dt;:. Since f is in C, zf' (z) = g(z)p(z)

for g(z) starlike and Re {P(z)} >0, z in E. Let Pi designate a function
with Re {Pi(Z)} >0, z in E, for i=l, 2, 3, and 4. Using these notations
and Lemma 2, we have

(3.11)

kp(z)*f(z)*_z- Kp(z)*zf'(z)*_z-
_~7""7"-=-Tl7-+.:-e:-z 1+Z

kfJ (z) *fez) K p(z) *zf' (z)

Kp(z) *g(z)P1(z) * ffi [Kp(z) *g(z)]Pz(z) *ffi
= K p(z)*g(z)P1(z) [KfJ(z) *g(z)]Pz (z)

_ {[Kp(z)*g(z)]* ffi}P3(Z)

- [K/l(z)*g(z)]Pz(z)

{[kp(z)*J:~de:}ffi}h(z)

-= [kp(z)*J: g~T..)dt;:]Pz(z)

[[kp(z) * f% g(T..)dT..J*~J
= )0 , l+z P3(Z)Pz-1(z).l kp(z) *J: g~,) de:
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It is also easy to prove that if h is in K then k*kp is in S* (f3). So

from the convexity of s: [g(C) /CJdl;; and Lemma 5, we have that (3.11)

equals

P4,2Cl-P) (z) P3 (z)Pl- 1(z).

Therefore, inequality (3.10) follows. Sharpness is proved by considering
the function f(z)=hc(z) = {z-[c/(1+c)J z2} /(1-z)2. A straightforward
calculation gives that

Iarg {[kp(z) *hc(z) *z(l + z) -lJ / [kp(2) *hc(Z) J} I

(3.12) = jarg {(i~; r-2P

[ i~ Ei=~~~ ~i ~~~5: JH
If we let 1-2,8/(1+c) = Reil' andz=eio, then, forO=-cp+1r/2, (3.12)
becomes

(3.13) I(3-2,8)1r/2+Arc sin[2R/(1+R2)J I.
Since R approaches 1 as 1c I approaches 00 we have that (3. 13) approa­
ches (2 - ,8) 7r and the result follow8.

4. Characterizations for the classes m. (a,,8) and Q (a, ,8)

We now give two generalizaions of O<.a, the class of functiotns prestar·
like of order a. Let a<l and ,8<l.

A function I E A normalized by f (0) = f' (0) -1 = 0, is said to be in
O<.(a,,8) if f*saEdp. Note that 0<. (a, a)=:o<'a_

A function fE A normalized by f(O) = I' (0) -1=0, is said to be in
Q(a,,8) if l*gEdp for all gEda • For a ~,8, the class Q(a,,8) was
studied by Ruscheweyh and Singh [25]. Suffridge [33J showed that
Q(a, a)-O<.(a, a)

The following lemma which is due to Ruscheweyh is useful in our
generalizations of O!.a

=
LEMMA 6. [28J. The function f (z) =2+ L: anzn in A is prestarlike of

n=2

order a (a<l) if and only if

z-xz2

(4.1) f(z)*(l_z)3 2a *0 (O<lzl<l, Ixl=l).

We begin with a discussion of the relationship of Q(a, ,8) to 0e(a, /3)
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for a:f:.f3. Since s.. Ed.. it is clear that

(4.2) Q(a, f3)c(R(a, f3)

We determine when this containment is proper with the following

THEOREM 4.1. We have Q(a, f3) =(R(a, f3) if and only if f3~a.

Proof. For f3~a, let f be in (R(a, f3) so that f*s..*s{j-1E(Rp. From
(1. 2), gEd.. implies g*S..-IE(R..c(Rp. It follows from (1. 3) that

Cj*s«*Sp-l) *(g*S,,-I) = f*g*sp-1 EO?p,

or, equivalently, that f*gEd p for all gEd«. Therefore, fEQ(a, f3).
Thus, O?(a, f3) cQ(a, f3) which combined with (4.2) proves that Q(a,
f3) (R(a, f3)'

For f3<a, we show that sp*s"-1 in 0e(a, f3) is not in Q(a, f3). It is
known [30J that z+b"z"Edr if and only if

(4.3)

Hence,

Ib,,1 sJ-r.n-r

Sp*S,,-1*(Z+ I-a z2)=z+I-f3 z2$.dp for f3<a.
2-a 2-a

For O~a<l, an application of Theorem 4.1 solves the problem of
determining the order of starlikeness of a function known to be convex
of order a. This problem was solved by MacGregor [15J using the
princple of subordination. We obtain the solution 'Simply as a

""
COROLLARY. If fez) =z+ L: a"z"EtX« (OSa<l), then f is starlike

0=2

of order

f
4"(1-2a) a:f:.1/2,

{3(a) = 4-22
«+1'

t
_1_ a=1/2.
log 4 '

Proof. It is known that fEtX.. implies f is starlike of order at least
a. We want to bnd f3=f3(a) ~a such that zf'=f*soEd« implies fEd p,
i. e., so-IEQ(a, f3). By Theorem 4.1, so-1EQ(a, f3) if and only if

SO-I*S,,=J: (1-C)2«-2dCE d p.

Thus, f3(a) is the order of starlikeness of
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1 «1-%)2a-l-1) a =1= 1/2,
It:r(z)= 2a-1 '

log (1 1
% ), a=l/2,

which is the value of [:J(a) recently given by Wilken and Feng [35J.

THEOREM 4.2. A necessary and sufficient condition for f to be in
O«a, [:J) is that

G(a, %) f (%) *(sa (z) / (1- z»
f(z)*sa(Z)

satisfies

(4.4) Re G(a z) > 1+.B-2a (zEE).
, - 2(1-a)

Proof. If fE(}«a, [:J), then g=sa*fEdp. From the identity

sa(z) =s (z)*{1-2a _z_+ 1 z}
1-z a 2-2a 1-z 2-2a (1-Z)2 '

it follows that

f( )*Sa(Z) _1-2a () 1 '()
Z 1-z - 2-2a g Z + 2-2a zg z .

Therefore,

G(a, z) 1-2a + 1 zg' (z)
2-2a 2-2a g(z)

and (4.4) follows. Conversely, (4. 4) implies that gEdp, and hence f
EO«a, [:J).

Given a family of functions Vc A, the dual of V, denoted by V*, IS

defined by

V*= {(EA: f*g=l=O for VgE V, zEE}.

The double dual of V is defined by (V*)* and is denoted by V**.
Dual spaces in this context were introduced by Ruscheweyh [23J, who
demonstrated their importance in solving various extremal problems. In
[23J, some families were given whose duals were various well known
subclasses of S.

COROLLARY, Ths function f is in O«a, [:J) if and only if
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(4.5)

Proof.
and
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+
(l-a)x+fi-a 2z z

f* 1- fi *0 (Ixl =1, -_O<lzl <1).
(1-z)3 2,.

From Theorem 4.2, if fEO«a, fi), thenf*s,.1=O (O<lzl <1)

(4.6)
f(z)* S,.(z)
~_l~z*1_(I-fi)(_l_), Ixl=l.
f(z)*s,.(z) I-a l+x

A simplification of (4.6) leads to (4.5). Conversely (4.5) implies (4.6),
which yields (4.4) by continuity.

In order to get characterization results for Q(a, mwe need the follo­
wing definitions and remarks that were originally given in [29J.

Suppose that k(z) is analytic and nonzero in E and that .< is real. We
say kEDA if

zk' (z) 1<'<12 for '<>0
Re k(z) >),/2 for A<O

=0 for A=O

For fEA, we say fEK(a, {3) (a;;::O, {32.0) , if f can be written in
the form fez) =k(z)H(z) where kED,._p and HEA is nonzero and
satisfies

larg H(z) I S; ~ 1C min (a, {3) (zEE).

REMARKS [29J. (1) For '«0, kEDA if and only if zkEdl+O/2)'

(2) Finite products of the form k(z) =CD/'=l (l+XkZ)Ak where IXkl =1,
"c*O, and 2: '<k=). (all Ak having the same sign) are dense inDA•

k=l

(3) For fEK(a, {3), f1=O.
(4) If gEU,. and hE-Up thenf=glhEK(a, m.
In [29J it is shown that K (a, {3) lies in the second dual of the class

of functions

(4.7) (l+xz)m(l+uz)r
(l-yz)1l (Ixl = Iyl = lul =1 or x=u=-y and

Ixl<l)
where m=[a] is the largest integer not exceeding a and m+r=a. In
particular, for m=l and {3=3-2a in (4.7), we have that K(l,3-2a)
lies in {(1+xz)/(l+yz)3-2,.} **. From Lemma 6, it follows that
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(4.8) K(l, 3-2a)c{~ :fEa?a}*

The dual of a?a provides us with nice necessary and sufficient condi­
tions for a function to be in Q(a, (3) when f3<a.

THEOREM 4. 3. A necessary and sufficient
Q(a, (3) is that

f -1 z(l+xz) /T} *
*Sa*Sp * (1-z)3-2/3 E()';.a

Proof. We know that

f -1 z(l+xz) /T} *
*Sa*SP * (1-z)3 2/l E()';.a

condition for f to be in

(Ixl =1).

if and only if

( 9) f -1 z(l+xz)..J..O (f 11 rT\ )4. <p* *sa*sp * (l-z)3 213 -r- or a <pE'Wa •

By Lemma 6, (4.9) is equivalent to requiring that

(4.10) f*sa*sp-l*<pEa?p for all <pEa?a.

But (4.10) is a necessary and sufficient condition for f*sp-1*g to be in
a?p for all gEda • Hence f*gEd/l for all gEda , and consequently
fEQ(a, (3). From (4.8) and Theorem 4.3, we have the following

COROLLARY. A sufficient condition for f to be in Q(a, (3) is that

(4.11) fez) * Sa(Z) * .!l.-1(Z) * l+xz EK(1 3-2a)
z z Z (l-z)32p ,

for Ixl =l.
The usefulness of (4.11) in providing information about Q(a, (3) for

particular choices of a and f3 is nicely illustrated for the case a= 1/2
and f3=0. With these choices (4.11) becomes

(4.12) fez) *llog(_I_) * l+xz EK(l,2)
,z z 1-z (1-z)3

for each x, Ix I= 1. A simple calculation shows that (4. 12) is equivalent
to

(4. 13)

Since

1+-1. (x-1)z
fez) * 2 EK(1,2) (Ixl =1).

z (1-Z)2
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fez) EK(I-A. 3-A.)
z 2' 2

1
1+2 (x-1)z x+l 1 x-I 1

(1-z)2 -2- (l-z)2 --2- 1-z '

it follows from (4. 13) that

~ (x+1)f'(z)- ~ (x-1)f~z) EK(1,2), Ixl=l.

Equivalently, for all real t.

(4.14) fez) (zl'(z) + it) EK(l, 2)
z fez)

is a sufficient condition for f to be in Q(I/2,0).
Sheil-Small [29J obtained the following properties of K(a, fJ), which

will prove useful in applications of (4.14).

LEMMA 7. [29J. (a) If a'~a, fJ'~fJ, then K(a',fJ')cK(a,fJ).
(b) If fEK(a, m, gEK(a', fJ') then fgEK(a+a', fJ+fJ').
(c) The function f is in K(a, a) if and only if larg (eiPf) I sate/2

for some f.l real.

THEOREM 4.4. If there exists.:t, O~A~l, such that

(1') I zf' (z) I~ 1t'A.
arg fez) ""2

and

(ii)

then f EQ(l/2, 0).

Proof. It follows from (i) that, for t>O, -A.7I:/2~arg(zf'/ f+it) ";;;'te/2
while, for t<O, 7I:12~arg(zf'If+it) ~)..7I:12. In either case, there exists a
real f.l such that

(4.15) larg[eiP ( z;~;» +it) JI,,;;;. ~ I~ - ( -;71:) 1= 1 iA. ~.

From Lemma 7, part (c), (4.15) is equivalent to requiring that for all
real t,

zl'(z) +'tEK (1+A. 1+A.) (zEE)
fez) z 2' 2

which, combined with condition (ii) and Lemma 7, part (b), proves
(4.14).
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The theorem provides us with an indication of SOme of the geometry
that can be sufficient to describe a function in Q(l/2,O). For example,
we deduce the following

COROLLARY. If

I f'(z) I 1t'A
argz f(z) ~ T

then fEQ(l/2, 0).

and Re zf'(z) ...... A+1 (O~ '~1 E)f(z) <::. 4 ""11",, , zE ,

Proof. It is clear that Dr=K(O, -r) for r<O. For g=f/z, we have

R zg'(z) R zf'(z) -1> A+1_1= A-3=_(3-A)
e g(z) e f(z) - 4 4 4'

It follows that f/zEK(O, (3-A)/2) which is contained in K«1-A)/2,
(3-A)/2) by Lemma 7, part (a). The result is now a consequence of
the theorem.

We conclude this section with a coefficient criterion for a function to
be in Q(a,,8), which is a consequence of the corollary to Theorem 4.3.

00

THEOREM 4.5. If f(z) =z+:E a"z" satisfies
11=2

00 n-{3
~ 1-{3 C(a,n)la"IS:1,

then fEQ(a,,8).

Proof. A direct computation yields that

_f_(z_) * _s,,_(_z)_ *stI -1 (z) * --;-:.=.l..:.+,x","z-n.;-
z z Z (1-z)3 2p

_ ~ n+1-2{3+ (n-1)x C( ) ,,-1
- ~ 2(1- (3) a, n a"z

=l+w(z, x)

where Iw(z, x) I~ Izl <1. Thus, 1+w(z, x) EK(l, 1) cK(l, 3-2a) and
(4.11) is satisfied.
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