• Title/Summary/Keyword: geometric phase

Search Result 267, Processing Time 0.024 seconds

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

DigitalMicrograph Script Source Listing for a Geometric Phase Analysis

  • Kim, Kyou-Hyun
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.101-105
    • /
    • 2015
  • Numerous digital image analysis techniques have been developed with regard to transmission electron microscopy (TEM) with the help of programming. DigitalMicrograph (DM, Gatan Inc., USA), which is installed on most TEMs as operational software, includes a script language to develop customized software for image analysis. Based on the DM script language, this work provides a script source listing for quantitative strain measurements based on a geometric phase analysis.

Geometric charts with bootstrap-based control limits using the Bayes estimator

  • Kim, Minji;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.65-77
    • /
    • 2020
  • Geometric charts are effective in monitoring the fraction nonconforming in high-quality processes. The in-control fraction nonconforming is unknown in most actual processes; therefore, it should be estimated using the Phase I sample. However, if the Phase I sample size is small the practitioner may not achieve the desired in-control performance because estimation errors can occur when the parameters are estimated. Therefore, in this paper, we adjust the control limits of geometric charts with the bootstrap algorithm to improve the in-control performance of charts with smaller sample sizes. The simulation results show that the adjustment with the bootstrap algorithm improves the in-control performance of geometric charts by controlling the probability that the in-control average run length has a value greater than the desired one. The out-of-control performance of geometric charts with adjusted limits is also discussed.

Two-Phase Approach to Optimal Weather Routing Using Real-Time Adaptive A* Algorithm and Geometric Programming (실시간 적응 A* 알고리즘과 기하학 프로그래밍을 이용한 선박 최적항로의 2단계 생성기법 연구)

  • Park, Jinmo;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.263-269
    • /
    • 2015
  • This paper proposes a new approach for solving the weather routing problem by dividing it into two phases with the goal of fuel saving. The problem is to decide two optimal variables: the heading angle and speed of the ship under several constraints. In the first phase, the optimal route is obtained using the Real-Time Adaptive A* algorithm with a fixed ship speed. In other words, only the heading angle is decided. The second phase is the speed scheduling phase. In this phase, the original problem, which is a nonlinear optimization problem, is converted into a geometric programming problem. By solving this geometric programming problem, which is a convex optimization problem, we can obtain an optimal speed scheduling solution very efficiently. A simple case of numerical simulation is conducted in order to validate the proposed method, and the results show that the proposed method can save fuel compared to a constant engine output voyage and constant speed voyage.

THE QUEUE LENGTH DISTRIBUTION OF PHASE TYPE

  • Lim, Jong-Seul;Ahn, Seong-Joon
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.505-511
    • /
    • 2007
  • In this paper, we examine the Markov chain $\{X_k,\;N_k;\;k=0,\;1,...$. We show that the marginal steady state distribution of Xk is discrete phase type. The implication of this result is that the queue length distribution of phase type for large number of examples where this Markov chain is applicable and shows a queueing application by matrix geometric methods.

Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric Algebra (Geometric algebra에 의한 비정현파 다선식 전력계통에서의 피상전력 표현)

  • Jeon, Seong-Jeub
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1921_1922
    • /
    • 2009
  • According to recent researches, apparent power in non-sinusoidal single phase system can be represented with geometric algebra. In this paper, the geometric algebra is applied to apparent power defined in a multi-line system having transmission lines with frequency-dependent resistances under non-sinusoidal conditions.

  • PDF

Effect of Parameters on the Two-Phase Flow Distribution Characteristics of Refrigerants in a Horizontal T-Junction (수평 T형 분지관 내 냉매 이상유동 분배특성에 미치는 변수들의 영향)

  • Tae Sang-Jin;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • The present study has been experimentally investigated the effect of geometric and operating parameters on the two-phase flow distribution of refrigerants in a horizontal T-junction. The operating parameters were the kind of refrigerants (R-22, R- l34a, and R-410A), saturated temperature, and the inlet mass flux and quality. The geometric parameters were the tube diameter and the tube diameter ratio. The measured data of refrigerants were compared with the values predicted using the models developed by several researchers for air/water or steani/water two-phase flow. Among the operating parameters, the inlet Quality was the most sensitive to the mass flow rate ratio. Between the geometric parameters, the tube diameter ratio was more sensitive than tube diameter.

Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric Algebra (기하대수에 의한 비정현파 다선식 전력계통에서의 피상전력의 표현)

  • Jeon, Seong-Jeub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2064-2070
    • /
    • 2009
  • According to recent researches, apparent power in a non-sinusoidal single phase system can be represented with geometric algebra. In this paper, the geometric algebra is applied to apparent power defined in a multi-line system having transmission lines with frequency-dependency under non-sinusoidal conditions.

Analysis of Galloping Amplitude for Conductors With Inter-phase Spacers

  • Kim Hwan-Seong;Nguyen Tuong-Long
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 2006
  • The main purpose of this paper is to calculate the behaviors of inter-phase spacers to reduce the amplitude of galloping in conductors. In simulation, three phases and iced-single/two-bundles conductors with/without spacers are considered in viewpoint of standard cases. The implicit/explicit finite element methods are used to calculate the transient response with geometric nonlinear behavior. The ANSYS/LS-DYNA program is also applied. Calculation results can be used to predict the positions to insert the inter-phase spacers between conductors.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.