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Analysis of Galloping Amplitude for Conductors
With Inter-phase Spacers

Hwan-Seong Kim' and Tuong-Long Nguyen*

Abstract - The main purpose of this paper is to calculate the behaviors of inter-phase spacers to
reduce the amplitude of galloping in conductors. In simulation, three phases and iced-single/two-
bundles conductors with/without spacers are considered in viewpoint of standard cases. The
implicit/explicit finite element methods are used to calculate the transient response with geometric
nonlinear behavior. The ANSYS/LS-DYNA program is also applied. Calculation results can be used to
predict the positions to insert the inter-phase spacers between conductors.
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1. Introduction

Galloping, which is defined as the instability of
aerodynamic and aero elasticity on overhead line
conductors, is the typical phenomenon of slender
structures. Since the early 1920’s, galloping of iced
conductors has posed a design and operating problem,
especially in the case of overhead power transmission line
conductors with low frequency (from 0.15 [Hz] to 1 [Hz])
and high amplitude galloping [1-2]. For understanding the
mechanisms and finding out the solution of galloping
problems, various models have been developed as
simulations [3-6]. There are two kinds of simulations, one
based on the experiment with real test conducted lines and
the other with numerical computing. In numerical
simulation, two cases of linear/non-linear differential
equations and finite element modeling method were used.

In practical simulation, to avoid the galloping, some
mechanical devices such as the pendulum detuner,
windamper, twister, torsional damper detuner, inter-phase
spacers, etc., were applied. In the case of using inter-phase
spacers, the problem is that it will affect the vibration of
the power transmission line (PTL). Conversely, when the
iced conductors are subjected to wind flow; its vibration
may increase or its motion may suddenly deflect. Thus, it
causes the cables from two different phases to come too
close to each other, and consequently repeated short-
circuiting is created.

Recently, simulation methods based on quasi-steady
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theory of the aerodynamic loading for galloping have been
studied [7-8]. In these results, lift, drag and torque
coefficient may be formerly measured in the wind tunnel
as a function of wind angle.

The main purpose of this paper is to calculate the behaviors of
inter-phase spacers to reduce the amplitude of galloping in
conductors.

In simulation, three phases and iced single two bundle
conductors with and without spacers are considered in the
viewpoint of standard cases. The implicit and explicit
finite element methods are used to calculate the transient
response with geometric nonlinear behavior. The ANSY'S/
LS DYNA program is also applied [9-12]. Calculation
results can be used to predict the positions to insert the
inter-phase spacers between conductors.

2. General Analysis Procedure

In this procedure, the power transmission lines are
modeled by beam elements that undergo very large
displacements. The element description is based on a rigid
convected co-ordinate or co-rotational formulation
described by Belytschko [10-12].

Moreover, the formulation is intended for explicit
temporal integration procedures, so stiffness matrices are
not developed.

2.1 Co-ordinate Systems

The element coordinate system is defined to have the
local x-axis x originating at node [/ and terminating at

node J, thelocal y-axis y and the local z-axis 2.
The element coordinate system( x, y,z) and associated
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unit vector triad (e, ey, e3) are updated at every time

step by the same technique used to construct the initial
system as in Fig. 1.

The unit vectors of the two coordinate systems define
rotational transformations between the global coordinate
system and each respective coordinate system.

\

(a) Initial configuration X

(c) Deformed configuration

Fig. 1 Co-rotational coordinate system

These transformations operate on vectors with global
component 4, body coordinate component 4, and

element coordinate component A, which are defined as.

Ax blx b2x b3x Zx
A=94y 0= by by by 194, :[/1]{‘4}
Az blz b2z b3z Zz

(D

where b, 5,5, denote the global components of
the body coordinate unit vectors. Similarly, the element
coordinate system is defined as

A, ey e e ||
A=1dyr=lay e, a,|14, :[l‘]{A}
Az €, €, €3 Az (2)

where ¢, ¢;, ¢;; denote the global components of the

element coordinate unit vectors. The inverse transfor-
mation is defined by the matrix transpose, i.e.

(@ =[] {4} 3)
{af =[] (4) @

2.2 Equations of Motion

The translation equations of motion are given on node /.

.. 1 int
priip = Fi — Ff" (5)

where p; denotes the translational inertia of node I.

The rotational equations are the usual Euler equations
of rigid body dynamics, on node 7.

xt in;
Lixg@x + U oy = Ly )0y0,1 = MyT — My]
ext int

Iyylayl Uy — Lz )05 ) = My - My (6)

ext int
Ioppor + (Iyyl - Ixxl)wxla)yl =M, — My

where I,.,I,, and I, denote the principal moments

of inertia. _
The displacements of the element are decomposed into
rigid body displacements 7, and deformation displace-

ments d;.

up =1 +dj (7
The strains are given by
PO ) (8)
o2lar; o%

which can be expressed for an element in matrix form
{8} =[£){d} ©)
where {d} denotes the matrix of nodal deformation

displacements.
And

{d} =[r{u} (10)
The nodal element forces { f im} are given by

{d} =[T)u} (1)
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{74} = [15) {6}av (12)
vV

where ¥ denotes the volume of the element, {6} the

stresses measured in the rotated co-ordinates {%;}, and

{ f d} the nodal forces conjugate to {d}.
{d}T{fd}zwi“t (13)
where {wim} denotes the internal work.

2.3 Belytschko Beam Element Formulation

The deformation displacements are given by

dT:{511,éx‘jjaéylaéyJ9ézl’ézJ} (14)

where &7, 6.y denote length change, torsional

deformation, and Oy1> Oy55 6,1, 6,5

denote bending
rotational deformations.

The superscript © denotes that theses quantities are
defined in the local element coordinate system, and 7 and
J are the nodes at the ends of the beam.

The deformation displacements are given by the
elongation of the beam is calculated directly from the

original nodal coordinates (X;,¥;,Z;) and the total

displacements (uyy, Uy, uzr)

2
(X gpusgy + X gy gr + Z grug ) + usgr ]

1 0
, , 12+l (15)
li+ux‘]1 +uyJ1 +uz‘]]]
* 0
1+1
where
Xjg=X5-X;1

Uy g =Uyg —Uyr; €lC.
For the purpose of computing the relative rotations,
b, 6, 6,6, and 6, the body components of the

unit vectors ¢f and e must be stored for each of the

two nodes of the element.

€ & &
by, +0,e3=det|1 0 0

16
A0 A0 A0 (16)
€x ely €z
0 ~0
= —elz 62 + ely e3
Then
A . A0
8, =-8& g, =¢
y 1z » z ly (17)
5 0 0
Oy =e (e xey;)
€ & &
_ A0 A0 ~0
=edet| ;e &
~0 ~0 0
€x2J ©y2J €27
_ 20 A0 A0 A0
=€21€:20 ~ 63276227 (18)

Eqgs. (15), (17) and (18) require the assumption that the
deformation displacement of an element is small.

2.4 The Shape Functions

The deformation displacement field for the beam
element is considered to consist of transverse
displacements that are cubic functions of % .

And, the axial displacement is a linear function of .

a7 =(1-&)dy +édy (19)
dr =(£=282 + N6, +-£2 + £)6,, 20)
d' =(-£+28 - b, +E-ENby
b, =6,y (22)

where

~ %>

And % is taken to originate at node /. Superscript
m is used to indicate that these are the displacement of
the mid surface.
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2.5 Bending Moments

The bending moments are related to the deformation
rotations by
r;’lyl B Kg —4+¢y 2—¢y_ éy] (23)
Ay gy |2-4, 444, 4,

{’hzl}:_li—4+¢z 2_¢zq{ézl} (24)

’;lZJ 1+¢z_2_¢z 4+¢24

The bending constants are given by

EI
Kf,z?”—’,and K;’:%ZZ- (25)
(22 o
I, = jz dydz 26)
— {20508
I, = Hy dydz @
_12EL, 28)
YGa?
12E1
g = 29)
GAl

Hence ¢, G and A denote the shear factor, the shear
modulus and the effective area in shear, respectively.

2.6 Torsional Moment

The torsional moment is calculated from the torsional
deformation rotation as

gy =K'O (30)
where
k=9 and J= ij’fdﬁdf
10

2.7 Temporal Integration

The equations of motion are integrated by the
Newmark p - method with =0, which is almost
identical to the central difference method.

These formulas predict the velocities and displacements

at the end of the time step. The translational components
are given by

NS B 1 7 .7+l

il =al, +5At(uijl +ul.JI+ ) (31)
i+1 i ool o

uljl = “iJI + Atui/[ +5At ulj[ (32)

where the superscripts denote the time step and Ar is
the time increment during a step.

In particular, the body component unit vectors are
updated using the formula

» . db) A dcb/
b,.f+1 =b/ + s A (33)
dt 2 dt2

The time derivatives in the above equation (33) are
replaced by their equivalent forms from vector analysis

db;

7; = 'bi (34)
d’b;
—z—lzwx(a)xbi)+(a><b,-) (35)
dt

where @ and « denote vectors of angular velocity
and acceleration, respectively. With the above relations
substituted into Eq. (33), the updated formula for the unit
vectors becomes

b/ = b) + At(w-b] )+
) . (36)
%Atz[a)x(a)xbij)+(axbij)]

The updated ¥ component of by is found by letting

i=3 in equation (36) and taking the scalar product of
both sides of the equation with 5, which yields, after

some simplification

A N N AY
by =4 b3
ST 67
:Ata))f,+EAt (0fof +af)

Similarly
vl j g+l
by3 _b2'b3

C 1o (3%
:—Atw,{+5At (0jof -ai)
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A N J+l
byl _bl b2

o Co
= Atw] +5At2(a)){a))f, —-aj)

(39
j+1
Since 3 is a unit vector, normality provides the
relation
_. — N2 172
bj+1:\/l_ b_/+1 __bj+1
z3 ( x3 ) ( 3 ) (40)
JHb

It is assumed that ¥ ! , orthogonality yields

7+l | i g+
B/t = _bx3 "'byl by3
21 Bt
z3 41)
j+l

The component b

< is then found by enforcing

normality

. _ 2 /. 1\2
A \ﬁ—(b){;rl) —(bz/1+1) (42)

The update components of b and by are defined
relative to the body coordinates at time step ;. Using Eq.
(3) with A defined at step j, and their vector cross
product is used to form 5, .

2.8 Using ANSYS/ LS-DYNA Program

The deformation displacement field for the beam
element is considered to consist of transverse
displacements that are cubic functions of x.

A modal analysis of the structure should be initially
performed to provide information about the structure’s
dynamic behavior. Then, the explicit finite element
method is used to determine the displacement response of
galloping for power transmission lines.

2.8.1 Modal Analysis

The first step in a modal analysis is to extract a set of
response modes. These can be obtained by performing an
implicit eigenvalue analysis. After computing the stiffness
and mass matrices K and M, the following system is

constructed

(K-o*M)p =0 (43)

and solved for the eigenvalue o and corresponding
eigenvectors (mode shapes) ¢;.

The basic algorithm of the block Lanczos method [13]
is used to determine the natural frequency of models. This
method uses the sparse matrix solver. Beam 4 element is
applied for models.

2.8.2 Transient Dynamic Analysis

The explicit finite element method is shown in Table 1,
with the approximations of small rotations implicit in Eqs.
41-42.

We also applied an ALPHA damping coefficient equal
to 0.019 to all materials. ANSYS/ LS-DYNA
automatically converts the implicit Beam 4 elements to
explicit Beam161 elements.

Table 1 The Flow chart for computational procedure

Flow chart

(1) |Set initial conditions, =0

(2) |Update displacement, {u(z+Ar)} by Eq. (32)

Update unit vectors b by Eqgs. (37)-(42) and

(3) |transform to global components by Eq. (3). Loop
on number of elements.

Find deformation displacement {4} by Egs.
(15), (16) and (18).

Find the strain in the convected co-ordinates,
) {&} byEq. (8).

“

(6) |Stress-strain law

Find local nodal forces { fd} by Eq. (12),

(7-) transform to { f i“t}

(8) |Add { fi“t} into {Fi“‘}. End of loop

Compute {ii(t +Ar)} by Eq. (5), and {a(s+An)}
by Eq. (6).

Compute

®

(u(t + Ar))
{o(r+An} by Eq.(31)

by Eq. (31), and
(10)

(11) | t«t+A, goto(2)

3. Modeling Considerations

In this paper, we assume the following 154 kV

overhead power transmission line with inter-phase spacer
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(hanging composite polymer spacer) in Fig. 2.

In a 154kV overhead power transmission line,
generally an aluminum conductor steel reinforced (ACSR)
type is used [14].

The ACSR electrical conductor (with 26 aluminum
wires and 7 steel wires) was used throughout this paper.
The tower sketch is used by the standard phase to phase
distance (3.8[m] and 4.3[m]).

A span of conductor with ends at the same altitude is
shown in the following equation

y= %{cosh(%x] - 1} (44)

The parameters of the model are presented in Table 2.
The model of a non circular cross section is given below
in Fig. 3.

Y
3.2 Dimensions in Meters [mj]

o=
A {
, "3.6
B '
} 5

Phase wire

Interphase Spacer

Earth
Fig. 2 Characteristics of PTL and spacers.

Table 2 Model parameters
Symbols Values | Units
(1) |Traveling wave velocity 131.3 | [m/s]
(2) |Horizontal tension 44455 | [N]
(3) | Span 250 [m]
(4) |Mass of'ice 0.128 | [kg/m]
(5) |Mass of conductor 1.673 | [kg/m]

(6) | Young’s modulus of conductor | 8.93¢"° | [N/m?]

(7) | Density of conductor 3480 | lkg/m’)
(8) | Young’s modulus of ice 14.9¢* | [N/m*]
(9) |Density of ice 917 | [kg/m’]
(10) | Young’s modulus of spacer 41 | [N/m*]
(11) | Density of spacer 2021 | [kg/m’]

y

£y
/’—\

F Unit :mm

y Wind F i .............. P

3 /’l
ﬁ o z
Fp

0.005%0.02474

Fig. 3 Wind attack forces and icing angle.

Fig. 3 denotes the definitions of the forces and shows
the relation between wind forces, lift and drag forces,
where, « denotes icing angle, A is angle of wind
attack, ¥ denotes a wind velocity, F; and Fp
represent lift force and drag force, respectively.

These forces Fj, Fp and movement Fy, are given

as
! 2
Fp = 2 PV s (45)
1 2
Fr =5CLpV N (46)
Fir = 3CupVsDic (47)

where, C; is coefficient of lift force, Cp is coefficient
of drag force, p is mass density of air, Dj- is diameter

of ice conductor, and s is area acting wind force.
By considering the angle of wind attack, the forces on
y and z axes are given as

F,=Fpcosf+Fy;sinf (48)

Fy, =Fpcos B+ Fpsinf 49)

The data for Drag - Lift - Moment

Magnitude

"o 20 0 60 80 160 120 140 160 180
Angle [deg]

Fig. 4 Aerodynamic characteristics.
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Generally, the lift and drag forces depends on the icing
shape, ice size, and icing angle etc. For galloping
simulation, the data for lift, drag forces and moment are
necessary. In this paper, we use the results in [3], which
were obtained by wind tunnel test as in Fig. 4.

4. Analysis Results

In analysis results, three phases and iced-single two
bundle conductors with and without spacers are
considered in 5 cases as in Fig. 5-7.

Beam 161-element is applied for the ice-conductor. It is
defined by two-nodes I and J in the global coordinate
system.

Node K defines a plane (with/and J ) containing the
element s -axis.

S {m]

\\//c
\\’/

T Y
Fig. 5 Three phases without spaces, Case 1.

stm sm

> A A

! L. s ]

interphase spacer I
\mjm \mjm

interphase spacer
Case 2 Case 3
Fig. 6 Three phases with spaces, Case 2 - Case 3.

Stm)

stm

interphase spacer interphase spacer

Case 4 Case 5
Fig. 7 Three phases with spaces, Case 4 - Case 5.

This element supports all nonlinear features allowing
for explicit dynamic analysis. Belytschko beam with
section integration is also applied as a trapezoidal section
or two beam-model. The iced conductor presented in Fig.
8a is modeled by two beam-element faces that are
connected by the spot weld. In this paper, the iced

conductor is modeled by a beam-element (trapezoidal
section) in Fig. 8b. The inter-phase spacers also are used
by Belytschko beam (rigid body rotations).

By considering an implicit analysis, we obtain the
resonance frequency as 4.22 [rad/s]. Explicit dynamic
analysis is than additionally applied. In this simulation,
the wind velocity is 23 SIn @r.

The maximal galloping amplitudes at center of span in
Case 1 (without spacer), in time 150 [s] are:

Uz=234[m], Uz=1.78[ml& ROTx =097 [rad].

Wing

Conductor

Based Mode! ﬂ

Beam-element (Ice)

Wing

Beam-element
(conductor)

(a)

Ice

Conductor

Based Model ﬂ

Wind \
T~

Beam-element
(conductor)

()

Fig. 8 Section of iced conductor.

Figs. 9-17 and Table 3 show the horizontal Uz vertical
Uy, and rotation on x axis [ROTx] in 5 cases, phases:
A, B, C.

The results of the computation prove that the amplitude
of conductor galloping is reduced by using inter-phase
spacers.

5. Conclusion

The main purpose of this paper is to calculate the
behaviors of inter-phase spacers to reduce the amplitude
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of galloping in conductors. In simulation, three phases and
iced single two bundle conductors with/without spacers
are considered in viewpoint of standard cases. The
implicit/explicit finite element methods are used to
calculate the transient response with geometric nonlinear
behavior. The ANSYS/LS-DYNA program is also applied.
The calculation results may be used to predict the
positions to insert the inter-phase spacers between
conductors.

Table 3 The amplitude at center of span (Min&Max)

Displ. Displ. Rotation

UZ [m] UY [m] ROTX[rad}

Casdl | @ | ay | @ | @y | @
A 26| -15] -0.8 -0.2 -0.9 -0.3
2.3 1.3 1.7 0.7 0.9 0.2
1| B -2.6 -1.5) -0.8 -0.2 -0.9 -0.3
2.3 1.3 1.7 0.7 0.9 0.2
C -26) -1.5] -0.8 -0.2 -0.9 -0.3
2.3 1.3 1.7 0.7 0.9 0.2
A -1.6 -14| -0.1 -0.2 -0.2 -0.2
1.7 1.3 0.9 0.6 0.2 0.2
2 | B -1.3 -1.2] 0.1 -0.1 -0.2 -0.2
1.3 1.3 0.9 0.6 0.2 0.2
c 22 -1.2] -05 -0.3 -2.3 -0.4
23 1.3 1.7 1.0 2.2 0.3
A 2.3 -1.3] -0.8 -0.3 -2.6 -0.4
2.3 1.3 1.3 0.6 2.5 0.3
3| p -1.2 -1.2] -01 -0.1 -0.2 -0.1
1.3 1.2 0.9 0.6 0.2 0.2
C -1.7 -1.2) -0.1 -0.1 -0.3 -0.1
1.8 1.4 1.0 0.61 0.2 0.1
A -14)  -12] 0.1 -0.2 -0.2 -0.2
1.4 1.3 0.7 0.6 0.2 0.2
4| p -1.1 -1.2) -02 -0.1 -0.2 -0.2
1.3 0.8 0.6 0.2 0.2
C 2.1 -1.3]  -07 -0.2 -1.1 -0.1
2.3 1.3 1.6 0.9 1.1 0.1
A -9 -1.37 -07 -0.3 -0.9 -0.4
2.3 1.1 1.5 0.8 0.9 0.3
B -1.2 -1.2] -0.1 -0.1 -0.2 -0.2
1.3 1.3 0.7 0.1 0.2 0.2
C -1.2 -1.2 -0.1 -0.1 -0.2 -0.1
1.3 1.3 0.7 0.6 0.2 0.1

Notes: Displ. - Displacement
(T1) - Single conductors

(T2) - Two-bundles conductors

Displacement on z axis [Uz]: {case1-cased) phase A

— displacement on z axis: casel-phase A
—#-_displacement on z axis: case4-phase A

|

‘ [t

il

Displacement [m]
- [=3

.

3

Time [s)

Fig. 9 Displacement on z axis, Case 1-Case 4, Phase A.

Displacement on z axis [Uz): {case)-cased) phase &

— displacement on z axis: caselphase B
-»_displacement on z axis: cased-phase B

ot %%

Oisplacement [m]

Time (5]

Fig. 10 Displacement on z axis, Case 1-Case 4, Phase B.

Displacement on z axis [UZ]: (case1-cased) phase C

~— displacement on z axis: casel-phase C
+ _displacement on z axis: cased-phase G

Displacement (m]

Fig. 11 Displacement on z ei)m({sl, Case 1-Case 4, Phase C.

Displacement on y axis [Uy}: (caset-cased) phase A

~— displacement on y axis: caselphase A
+-_displacement on y axis: cased-phase A

Dispiacement [m]
°
&

°

0.5F

B

Time [s]

Fig. 12 Displacement on y axis, Case 1-Case 4, Phase A.
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Displacement on y axis [Uy): (case1<ased) phase 8

Time [s]

Fig. 13 Displacement on y axis, Case 1-Case 4, Phase B.

Displacement on y axis {Uy}: (case1- case4 ) phase C

Time [s]

Fig. 14 Displacement on y axis, Case 1-Case 4, Phase C.

Rotation on x axis [ROTX: {case1<ases) phase A

Rotation on x axis ROTX: case4-phase A

‘ — Rotation on x axis ROTX: casel-phase A |

Time [s}

Fig. 15 Rotation on x axis, Case 1-Case 4, Phase A.

Rotation on x axis [ROTX: (case’-cased) phaseB

x axis ROTX: casel-phase B
ion on x axis ROTX : cased-phase B

‘l "‘ A 1“"(““0 \

|

iy ‘1’”\»“
¥ S

Time [s]

Fig. 16 Rotation on x axis, Case 1-Case 4, Phase B.

Rotation on x axis [ROTX: (casei-case4) phase G

— Rotation on x axis ROTX: case1-phase C
—+-_Rotation on x axis ROTX: cased-phase C

Rolation [rad]

Time [s]

Fig. 17 Rotation on x axis, Case 1-Case 4, Phase C.
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