$t=r CAD/CAM 3t3| =3
M3 M43 1998A 128 pp. 211-222

o

>

A Geometric Constraint Solver for Parametric Modeling

Jae Yeol Lee* and Kwangsoo Kim**

ABSTRACT

Parametric design is an important modeling paradigm in CAD/CAM applications, enabling
efficient design modifications and variations. One of the major issues in parametric design is to
develop a geometric constraint solver that can handle a large set of geometric configurations
efficicntly and robustly. In this paper, we proposc a ncw approach to geomefric constraint solving
that employs a graph-based method to solve the ruler-and-compass constructiblc configurations and a
numerical method to solve thc rulcr-and-compass non-constructible configurations, in a way that
combines the advantages of both methods. The geometric constraint solving process consists of two
phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction
steps is generated by clustering the constrained geometric entitics and reducing the constraint graph
in sequence. In the execution phase, each construction step is evaluated to determine the geometric
entities, using both approaches. By combining the advantages of the graph-based constructive
approach with the universality of the numerical approach, the proposed approach can maximize the
efficicncy, robustness, and extensibility of a geometric constraint solver.

Key words : Parametric design, Variational design, Rulc inferencing, Graph reduction, Geometric

rh

o

constraint solving

1. Introduction

Parametric design is an approach to product
modeling, which associates engineering knowledge
with geometry and topelogy in a product design by
means of geometric constraints’. It allows users to
make modifications to existing designs by changing
parameter values. For this reason, paramectric design
has been considered an indispensable tool in many
applications such as mechanical part design, tolerance
analysis, simulations, kinematics, and knowledge-based
design automation™®.

Many research efforts have been made toward im-
proving parametric design functionality. One of the
main efforts is to develop a geometric constraint
solver that can solve a geometric constraint problem
efficiently and robustly. There are two major ap-

AAFNLTY AT 2T EAol7]ERTF R
T YFARGT T4

211

proaches to solving a geometric constraint problem: 1)
numerical approach and 2} construclive approach.

In the numerical approach, geometric constraints are
converted into a system of numerical equations”™*”.
Then, the system of equations is solved by an
iterative numerical method. This approach can solve
any set of geometric configurations including ruler-
and-compass non-constructible configurations since
any problem which can he represented as a set of
equations can be, in theory, solved by numerical
techniques. However, along with this advantage come
some significant shortcomings™”:

* Numerical techniques have a number of problems
related to numerical stability and solution consistency.

» The number of iterations requircd to solve a set of
constraint equations can vary substantially, depending
on initial conditions given te the solver.

+ Numerical techniques are relatively inefficient.

» Numerical techniques cannot distinguish between

different roots in the solution space.



L

212 Jae Yeol Lee and Kwangsoo Kim

Due to the limitations of the numerical approach
mentioned above, most parametric design systems
adopt the constructive approach as a fundamental
scheme for solving geometric constraints.

In the constructive approach, geometric constraints
are represented by a set of knowledge such as graphs
or predicate symbols"*™. In this approach, a constraint
satisfies the
processing the sct of knowledge. Usually, the solver

solver constraints by incrementally
takes two phases of gecomeiric constraint solving: a
planning phase and an exccution phase. During the
first phase, a sequence of construction steps is derived
using a graph-based
technique. During the second phase, the sequence of

technique or a rulc-based

construction steps is carried out to determine geometric
entities. The constructive approach separatcs the sym-
bolic aspects from the numerical aspects so that those
usual problerus  such instabilities
associated with the numerical approach can be
minimized. Owen™ presented a graph-based construc-
tive solver in which a constraint graph is analyzed for

a4s  numerical

triconnected  commponents. However, only ruler-and-
compass constructible configurations were considered.
Hoffmann et al™ proposed a similar approach, but
they extended their approach to deat with more
complex configurations. Lee and Kim"” proposed a
graph-based rule
overcome an incfficient geometric reasoning process

inferencing method, which can

of rule-based inferencing methods. Nevertheless, it
can only deal with mler-and-compass constructible
configurations.

Fig. 1 shows mler-and-compass non-constructible
models that require sophisticated solving techniques.
The triangle in Fig. 1(a) is well constrained, apart
from rigid body translation and rotation. Though this
configuration is seemingly very simple, it is difficult
for constructive approaches to solve the constraints
since it requires reasonably sophisticated ordering of
construction steps. The model in Fig, 1(b) cannot be
solved by any constructive approach since it partially
requires a numerical technique to determine the
geometric entities. These examples show that the
constructive method alone cannot solve a variety of
geometric configurations.

In this paper, we propose a new approach to

FILCAD,/CAM 3] =33 A3 A 43 1998 129

75
100
+50.0 —"
(@) o (b)
Fig. 1. Ruler-and-compass non-constructible configura-
tions.

geometric constraint solving that employs a graph-
based method to solve the ruler-and-compass
constructible configurations and a numerical method
to solve the mler-and-compass non-constructible
configurations, in a way that combines the advantages
of both methods. The geomefric constraint solving
process consists of two phases: 1) planning phase and
2) execution phase. In the planning phase, a sequence
of construction steps is generated by clustering the
constrained geometric entities and reducing the
constraint graph in sequence. In the execution phase,
each construction step is evaluated to determine the
geometric entities, using both approaches. By combin-
ing the advantages of the graph-based constructive
approach with the wuniversality of the numerical
approach, the proposed approach can maximize the
efficiency, robustness, and extensibility of a geometric
constraint solver.

The remainder of this paper is organized as follows.
Section 2 describes an overview of the proposed
geometric constraint solver. Section 3 presents the
construction plan generation phasc of thc solver.
Section 4 describes the plan evaluation phase of the
solver. Section 5 shows implementations resulis.

Section 6 presents a conclusion with some remairks.
2. Geometric Constraint Solving: Overview

A geomctric constrained problem is defined by a
geometric model consisting of a set of peometric
entitiecs and a set of geometric relations, called
constraints. Geometric entities used in the paper
include points, lines, circles with given radii, line



A Geometric Constraint Solver for Parametric Modeling 213

segments, and circular arcs. Constraints include
incidence, distance, angle, parallclism, concentricity,
tangency, and perpendicularity. A geometric entity
has its own degrees of freedom, which allow it to
vary in shape, position, size, and orientation as
shown in Table 1. A geometric constraint reduces the
degree of freedom (DOF) of the geometric model by
a certain number, called the valency of the constraint,
depending on the constraint type as shown in
Table 2**) In order for a set of geometric entities to
be fully constrained, all their degrees of freedom
must be taken up by geometric constraints. The
geometric model can be represented by a constraint
graph in which nodes arc geometric entities, and
edges are geomeltric constraints.

The proposed constraint solving process consists of
two phases: 1) planning and 2) execution. In the
planning phase, a sequence of construction steps is
generated by incrementally forming a series of rigid
bodies with three DOF (two translational, one
rotational), called clusters. A rigid body is a set of
geometric elements whose position and orientation
relative to cach other is known. At each clustering
step, a rigid body with three degrees of freedom,

Table 1. Geometric entities and their degrees of freedom

Geometric entities Dcgrees of freedom (DOF)

Point
Line
Circle
Circle with given radius

W

Table 2. Geometric constraints and their valency

Associated Geometric

Constraint Type Entitics Valency
Point, Point 1
. Point, Line 1
Distance Point, Circle 1
Line, Line 2
Incidence Point, Line 1
Point, Circle 1
. Point, Point 2
Coincidence Line, Line 5
Line, Circle 1
Tangency Circle, Circle 1
Angle Line, Line 1
Parallelism Line, Line 1
Concentricity Point, Circle 2

consisting of a pair of certain geometric entities and/
or clusters and a number of geomeltric constraints, is
identified and combined into a single merged cluster,
R. This clustering process continues until the reduccd
constraint graph becomes a single cluster.

In the execution phase, each construction step is
evaluated to derive positions and orientations of the
geometric entities in the cluster by selecting an
appropriate solving method among the three proposed
procedures described in Section 4, considering the
type of clustering. If the constraint graph is not
reduced to a single cluster in the planning phase, the
undetermined geometric entities in the constraint
graph are solved by a numerical method.

Notations being used throughout the paper are
summarized below:

1) L, C, and P, represent a line, a circle, and a
point, respectively.

2) G; represents a geometric entity (or a cluster)
with two DOF.

3) R; represents a cluster {or a geomctric entity)
with three DOF.

3. Plan Generation

{f a peometric constraint model is well-constrained
as shown in Fig. 2, a sequence of construction steps,
as shown in Fig. 3, is generated by two phases; 1)
preprocessing the pairs of adjacent geometric entity
nodes constrained by the geometric constraints with
two DOF as shown in Fig. 4, and 2) clustering the
paits of adjacent geometric entity and/or cluster
nodes connected by a number of constraint edges that
have one of the clustering types shown in Fig. 5.
Each set of nodes/edges in Fig. 5 forms a cluster or
rigid body. If a geometric model is over- or under-

Py L, P,
B x
Ly L Dy
o Ly Y
P, D, P,

Fig. 2. A simple design and its constraint graph.

FFCAD,/CAME 3] =53 A 348 A 4% 1998 129



214 Jae Yeol Lee and Kwangsoo Kim

Step Clustering Reduced graph

O——® ~@
-~®

©

& -@® -6

(

=

P;

@ @=G) —G& &,

Po

Py

4 — @

()
o ~O @

Fig. 3. The clustering steps for the design shown in
Fig. 2.

constrained, a special handling of the model is neces-
sary. The preprocessing, clustering, and over- & under-
constraint detecting procedures are described below.

L; L}

{a) (b)
Fig. 4. Constraints that reduce two degrees of frecdom.

Z=CAD,/CAM%} 3| =73 A 33 Al43 19983 129

Classﬁ'y further

Nﬁﬂ

(c) (c3)

Gy geometric entities {or clusters) with two degrees of freedom.
Ry clusters (or geomenric entities} with three degrees of freedom
Ry geometric entities in the cluster R,

Fig. 5. Type of clustering. (a), (b): ruler-and-compass
constructible, (c;), (c;): cxtended ruler-and-com-
pass constructible; and (c;) ruler-and-compass
non-constructible configurations.

3.1 Preprocessing the constraint graph

As shown in Table 2 and Fig. 4, most of
geometric constraints take up one DOF, but there are
some special cases that reduce DOF by 2. A distance
dimension between two lines specifies both parallelism
and distance so that it takes up two degrees of frcedom.
A coincidence constraint betwcen two points also takes
up two degrees of freedom, as does a concentricity
These geometric constraints and their
associated geomefric entities are combined into a
special type of clusters with 2 DOF. In the proposed
approach, a cluster with 2 DOF is treated as a pseudo
geometric entity with 2 DOF. During the prépmceming,
thus, the set of a geometric constraint with 2 valency

constraint.

and its two associated geomefric entities is identified
and combined into a pseudo geometric entity as shown
at step (0 in Fig, 3.

3.2 Clustering geometric entities and/or clusters

Each set of nodes and edges shown in Fig. §
forms a cluster or rigid body with three DOF. In this
clustering procedure, the sets of nodes and edges

“with three DOF are identificd incrementally and

combincd into merged nodes. By identifying and
merging clusters sequentially, the constraint graph



A Geometric Constraint Solver for Paramctric Modeling 215

Table 3. Solving techniques according to clustering types

. - Related Graphs  Solvin,
Clustering Types Type Descriptions in Fig, 5p Techniqfes
One connecting edge Two G nodes a A
Two connecting edges One G node and onc R node b A
Three connecting edges One geometric entity constrained by three constraints G B

A: Ruler-and-compass constructible (RCC)
B: Extended tuler-and-compass constructible (ERCC)
C: Ruler-and-compass non-constructible (RCNC)

may be reduced to a single merged node as shown in
Fig. 3. The clusters are classified into three types: 1)
ruler-andcompass  constructible (RCC), 2) extended
ruler-and-compass constructible (ERCC), and 3) ruler-
and-compass non-constructible (RCNC). An  appropr-
iate solving method is provided to each of the clustering
types during the execution phase as shown in Table 3.
The geometric entities in the clusters shown in Fig.
5(a) and 5(b) are ruler-and-compass constructible.
Thus, they can be effectively determined by a graph-
based geometric
geometric entities in the clusters shown in Fig. 5(c)
are not ruler-and-compass constructible. To solve this
type of clusters effectively, the clusters are further

reasoning technique'”. The

classified into three types according to the relations
between geometric entities in two clusters: 1) one-to-
theee, 2) onc-to-two, and 3) one-to-one, as shown in
Fig. 5(c,), 5(c,), and 5(c;), respectively. One-to-three
and one-totwo type clusters are solved by an
extended ruler-and-compass method, whereas one-to-
one type clusters are not. For example, the clustcrs
shown in Fig. 6 & 7 are extended ruler-and-compass
constructible. Note that the configurations shown in Fig,
7 cannot be solved by Aldefeld's" and Sunde’s™ rule
infecrencing  methods  because they cannot support
parallelogram rules and quadrilateral rules™.

The one-to-one type cluster shown in Fig. 8 is
solved effectively by a numecrical method. Among
these clusters, however, the clusters with the con-
figuration shown in Fig. 9 can be effectively solved
by a root finder for univariatc polynomials™. The
difference between the two configurations in Fig. 8
and 9 lies in the constraint relation in each cluster. The
configuration in Fig. 9 has a cyclic rclation among
geometric entities in each cluster. On the other hand,
the configuration in Fig. 8 has no such a relation.

P
D; L, D,
L,
C
Py Ly P,
D,
Fig. 6. Extended ruler-and-compass constructible: one-
to-three type.

3.3 Detecting over- and under-constrained geome-
tric models

It is important to detect over- and under-
constrained conditions during constraint solving. By
analyzing degrees of freedom of clusters, we can
detect over- and under-constrained conditions. Let
Gpor be the total deprees of freedom of geometric
entities in a cluster, and Cpor be the total degrees of
frcedom taken up by constraints. If Gpor< Cpor-3,
then the cluster is over-constrained. If Gror> Cpor - 3,
it is under-constrained. When a cluster is marked as
under-constrained, a constraint solving system may
request more constraints as input, or add appropriate
default constraints for an intuitive solution.

4. Plan Execution

Each construction step is evaluated to derive the
positions and orientations of geometric entities in a
cluster by executing an appropriate solving method
described below. A ruler-and-compass constructible
cluster is solved by a rule-based method"”, This
method calculates the coordinates and coefficients of

geometric entities by selecting appropriate rules from

/=CAD, /CAM%} 3] =F3 Al 33Y Al 43 19983 129



216

Ry

R2
(a)

Jae Yeol Lee and Kwangsoo Kim

.................. ~
. .
ki . : . P3 \\
P; ¢ \
3
Ty A2
A} L3 R
el i
Dj IL2 Lj Ds ) (
\
- P L A \
: )
P 0 D \k.. _______ ) P4 //
AN 2 \ ................
*
Ry "

(b)

Fig. 7. Extended ruler-and-compass constructible: one-to-two type.

D,
P
3 P’ ’
Ls Cluster R,
D N
2
P, P2
Y L, Cluster R,
Polq
D; k1P
D, Ls
A 4 L2
P, R

<D3

Fig. 8. Ruler-and-compass non-constructible: solvable by a numerical technique.

a rule-base and finng them. An extended ruler-and-
constructible  cluster
algebraic method. This method determines the

compass is solved by an
geometric entities by finding a sequence of rotations
and translations to satisfy the geomeiric constraints.
is

A nler-and-compass nen-constructible  cluster

solved by a numerical method. This method solves

§+-CAD,/ CAM3} 3]

=23 A3 A4z 19983 129

the constraint problem by finding a transformation
matrix that represents the relation between two rigid
bodies. These solving methods are explained below.

4,1 Solving the ruler-and-compass constructible
clusters
In this solving procedure, the two facts are initially



A Geomerric Constraint Solver for Parametric Modeling 217

Fig. 9. Rulcr-and-compass non-constructible: solvable by
a finder of univariate polynomials.

(a) (b)

Fig. 10. An example design and its constraint graph.

added into the fact-base to fix the translation and
rotation of the rigid body of a geometric constraint
model. For the example shown in Fig. 10, the two
facts are Coordinate P, and Direction L;. Using these
facts, a rule-based inferencing process may start as
shown in Fig. 11. At each step of inferencing, the
rule to be fired is selected by finding a mle that is
associated with the same geometric entities as those
in the current cluster. At step 3 in Fig. 11, for
instance, the selected rule is associated with two lines
(L;, L;) and a point (£;) as the cluster R;. The first
two conditions, Coefficient L; and Coordinate P, in
the IF-clause of the rule arc satisfied by the facts
added into fact-base in the previous clustering steps.
The last two conditions, On P; L, and Angle L; L; A,,
are satisficd by the two facts given by the two
geometric constraints.

4.2 Solving the extended ruler-and-compass con-
structible clusters

Considering thc geometric entities and their
relations in the clusters, an appropriate procedure is
developed for each type of the extended rulcr-and-

compass constructible clusters. Each procedure

Step Clustering Rules to be applied Reduced graph

Coordinate P,
Direction L,

© ®--0~+@

§

PI Ll
— Coefficient L,

Distance P, P, D @

Onp L,

Onp, L,

Coefficient L, e Q
Coordinate P, A A

— Coordinate P, @

@ —»

Coefficient L,
Coordinate P,
OonP L

Angle L, L; 4,

— Coefficient £,

-~
(]

) OB ->@

Coefficient L,
Coardinale P,
On# L,

Angle L, L4y

— Cosfficlent £,

» (®EAD) >

OnP, L,
On
Coe,;f‘lé'i;mL,

Coefficiant L,
— Coordinate P,

Fig. 11. Rulc inferencing in clustering steps for the
design in Fig. 10.

> ® @@

specifies a sequence of rotation & translation
operations that transforms one cluster R, with respect
to the other cluster R, to satisfy the geometric
constraints. As an example, the procedure for the
extended ruler-and-compass constructible cluster
shown in Fig. 7(a) is summarized as follows. In Fig.
7(a), (i) R, consists of L, and P,, (ii) R, consists of L,,
P, and L, and (iii) L, are connected to L, and P,.

PROCEDURE ONE_TO TWO (R(L,P), RAL,P,L))

INPUT: two clusters R, and R,

OUTPUT: a merged cluster R consisting of R, and R,
A=angle (direction(Z,), direction(;)); rotate(R, A,-A);
L=linc(P;, normal(direction(L,)));
1P =intersect(L, L,); translate(R,, vector-differ{P, 7P,));
LL=line(P,, direction(L,));

IP=intersect(L.L, L), translate(R,, vector-differ(P,
P))
END_PROCEDURE

A similar procedure is given for the configuration
in Fig. 7(b). In the figure, (i) R, consists of P, and P;,

FIXCAD,/CAME 3] =13 A 3P Al 43 19983 129



O

218 Jae Yeol Lee and Kwangsoo Kim

(ii) R, consists of L; P, and P, and (iii) P, is
connected to P, and L;.

PROCEDURE ONE TO TWO(R(F,F), RAL,P,P))
INPUT: two clusters R, and R;
OUTPUT: a merged cluster R consisting of R, and R,
L=line(P,, normal(direction(l.,));
IP=intersect(L, L), translate(R,, vector-differ{P, {P));
C,=circle(P, D),
IP=intersect(L, C,); translate(R,, vector-differ(fP,
),
D=distance(P, Pp);
Cy=circle(P, D);
C=circle(Ps, D),
IP;=intersect(C, C),
A=angle (vector-differ(P,-P,), vector-differ(IP;, P.));
translate(R,, -P,); rotate(R, -A); translate(R,, P);
END_PROCEDURE

4.3 Solving the ruler-and-compass non-con-
structible clusters

An efficient procedurc is developed to solve the
ruler-and-compass nen-constructible clusters. In the
procedure, the constraint problem is solved by
finding a transformation matrix that rcpresents the
relation between two clusters R; and R,. An iterative
method based on the Newton method is used to
calculate a parameter, 6, for rotation and two parame-
ters for translation, d, and d,, that define a 3x3
transformation matrix. This transformation matrix is
used to position the cluster R, (or R)) relative to the
cluster R, (or R;) so that the peometric constraints
between the two clusters are satisfied.

The values of the three parameters for the trans-
formation matrix can be computed by using the
iterative Newton's method given by

XM = X<~ FXY- (7 (X))
where the vector X, function F(X), and Jacobian
matrix J(X) are defined as follows.

X =|d
dy

HX)
FX)=|fX)
f4&X)

35,0y afx) 3f,0) |
26  od. 94,
AfAX) fAX) BfAX)
96  od,  dd,
XY BfX) fX)
38  od.  od,

JX)=

if we position the cluster R, relative to R, the
coordinate functions f;, f, f; of F(X) for the
configuration shown in Fig. 8 are defined as follows.
From the constraint On P, L,

F(X)=D X (V-P)=0

cos® —sin@] |L ,.direction.x.
where D =] .
sind cos@

L \.direction.y

sin@ cos@ d, L ypointy

1
P.x
V=
P,y

From the constraint On P, L,,
fAX)=DX(V-P)=0

[:cwe —sin @ d,] L\ foint.x

L, directionx
L, direction.y

where D = {

Py
1

cos@ —sin@ dy | 1%
“|sin® cost d,

L, fointx
= L. pointy
From thc constraint On P, L,,
f(X)=DX (V-P)=0

L direction.x
L . direction.y

where D = [

“' A line is assumed to be defined by its direction vector and a point on the line, where direction.x is the x-coordinate
value of the direction vector and pointx is the x-coordinate value of the point on the line.

= CAD, /CAMHE] =& Al 3 Al 45 1998 129



A Geometric Constraint Solver for Parametric Modcling 219

D,
Lg P 6
7 D,
L5 P 3
P3 9
3
Ls
L
DZ La PJ D5
L,
L, & Pry
Pol g
< D;
Stap Clustering Reduced graph

Fig. 12. A design model and its constraint graph.

Step Clusicring Reduced graph

Oy

{0): Preprocessing. @

(I:RCC

{2): RCC

(3 RCC

4): RCC

—-®

(5): RCC _: —

@rrec - -G — &

7):RCC @y P —

(8):RCC @i@ — &

(9): RCC O3 ==F) —

(10): RCC @ .:.’3’»: - \

@ @

(11): RCNC -

RCC: ruler-and-compass constructible

RCNC: ruler-and-compass non-constructible

Fig. 13. A sequence of the generated construction steps.

FXCAD, /CAM3E =37 A3 Al 43 19983 129



O

‘ 220 Jae Yeol Lee and Kwangsoo Kim

steps generated by the proposed geometric constraint

. Px
cos @ —sin 9 d. solver is shown in Fig. 13. By evaluating the scquence
) [sin& cos & dy ] Fa¥ of construction steps for different sets of parameter
! values, shupes can be easily modified as shown in
L., foint.x Fig. 14. Fig. 15 shows another example that also has
= lLS' point. yl a ruler-and-compass non-constructible configuration.

Each of triangles 7T, T,, and 7; is yuler-and-compass

constructible so that it can be solved by the rule-

5. Implementation based method. However, the configuration consisting

of T, T, and T; is ruler-and-compass non-con-

The proposed geometric constraint solving structible. Fig. 16 shows a mechanical part and its

procedures have been implemented in C++ on an modified one that are modeled by using the feature-

[RIS Indigo2 workstation as a sub-module of the based parametric modeling system.

feature-based parametric modeling system developed

by the authors'™. Fig. 12 shows a well-constrained 6. Discussions
h parametric_design and its constraint graph. Though it
looks to be a simple design, it is not ruler-and- We have presented a new approach to geometric

compass constructible. The sequence of construction constraint solving that can efficiently deal with ruler-

70.0

qo

By~ 1600

Fig. 14. Modified shapes of the design model in Fig. 12.

Fig. 15. An example design with RCNC configuration.

F=CAD,/CAMEE] =73 A 3 Y A 45 1998 129



A Geometric Constraint Solver for Parametric Modeling

221

Fig. 16. A 3D parametric design

and-compass non-constructible configurations as well
as ruler-and-compass constructible configurations.
The proposed approach employs a graph-based
constructive approach globally and a numerical
approach locally. The use of the numerical approach
is restricted to solving only those clusters for which it
is the only approach to be applicable. By combining
these two approaches, the proposed approach has the
of both approaches: robustness and
efficiency. In this paper, we restrict the types of
geometric entities t0 be handled to points, lines and
circles. In the future, we will extend the types of
geometric entities to conic sections and free-form

advantages

curves such as Bezier and B-spline curves.
Acknowledgements

This research is supported in part by KOSEF(971-
1007-043-1) and ETRL

References

1. Anderl, R. and Mendgen, R., "Parametric design
and its impact on solid modeling applications”, Proc.
3rd Symp. Solid Modelling Foundations & CAD/f
CAM Applications, ACM Press, pp. 1-12, 1995.

2. Gossard, D.C., Zuffante, R.P. and Sakurai, H,
“Representing  dimensions, tolerances, and features
in MCAE systems”, IEEE Comput. Graph. & Appl-
ic., Vol. 5, No. 3, pp. 51-59, 1998.

3. Kondo, K, “PIGMOD: parametric and inferactive
geometric modeller for mechanical design”, Computer-
Aided Design, Vol. 22, No. 10, pp. 633-644, 1990.

4. Relier, D., "An approach to computer-aided parame-
tric design’, Computer-Aided Design, Vol. 23, No.

10.

11.

12.

13.

14.

15.

and its modification.

5, pp. 385-391, 1991,

. Solano, L. and Brunet, P., "Constructive constraint-bas-

ed model for parametric CAD systems’, Computer-
Aided Design, Vol. 26, No. 8, pp. 614-622, 1994.

. Lee, J. Y., “A study on feature-based parametric

design”, M.S. Thesis, POSTECH, Korea, 1994.

. Hillyard, R. and Braid, [., “Analysis of dimensions

and tolerances in computer-aided mechanical
design”, Computer-Aided Design, Vol. 10, No. 3,
pp- 161-166, 1978.

. Kondo, K., "Algebraic method for manipulation of

dimensional relationships in geometric models’,
Computer-Aided Design, Vol. 24, No. 3, pp. 141-
147, 1992,

. Light, R. A. and Gossard, D. C., "Modification of

geometric models through variational geomertry”,
Computer-Aided Design, Vol. 14, No. 4, pp. 209-
214, 1982,

Kramer, G. A., Solving Geometric Constraint Sys-
tems: A Case Study in Kinematics, MIT Press, Cam-
bridge, Massachusetts, 1992.

Owen, J. C., "Algebraic solution for geometry from
dimensional constraints”, Proc. Ist Symp. Solid
Modeling Foundations & CAD/CAM Applications,
ACM Press, pp. 379-407, 1991.

Bouma, W., Fudos, I, Hoffmann, C. M., Cai, J. and
Paige, R., “Gcometric constraint solver , Computer-
Aided Design, Vol. 27, No. 6, pp. 487-501, 1995.
Aldefeld, B., “Variation of geometries based on a
geometric reasoning method” , Computer-Aided Design,
Vol. 20, No. 3, pp. 117-126, 1988,

Sunde, G., “Specification of shape by dimensions
and other geometric constraints”, Geometric Model-
ing for CAD Applications, North-Holland, pp. 199-
213, 1990.

Suzuki, H., Ando, H. and Kimura, F., “Geometric
constraints and reasoning for geometric CAD sys-

FLCAD,/CAMHZ] =53 A3y A 435 19981 129



222

16.

17.

18.

19.

20.

F5-CAD /CAME S| =54 A3 2) 4 3 19983 129

Jae Yeol Lee and Kwangsoo Kim

tems , Computers & Graphics, Vol. 14, No. 2, pp.
211-224, 1990.

Vemoust, A., Schonek, F. and Roller, D., “Rule-
oriented method for parameterized computer-aided
design”, Computer-Aided Design, Vol. 25, No. 10,
pp. 531-540, 1993.

Lee, J. Y. and Kim, K., “Geometric reasoning for
knowledge-based parametric design using graph
representation”, Computer-Aided Design, Vol. 28,
No. 10, pp. 831-841, 1996.

Lee, 1. Y., "A knowledge-based approach to parame-
tric featurc-based modeling”, PA.D. Thesis, POS-
TECH, Korea, 1998.

Hsu, C. and Brucderlin, “A hybrid constraint solver us-
ing exact and iterative geometric constraints , CAD
Systems Development: Tools and Methads, Roller and
Brunet (eds.), Springer, pp. 265-279, 1997.

Fudos, I. and Hoffmann, C. M., “A graph-con-
structive approach to solving systems of geometric
constraint”, ACM Trans. On Graphics, Vo. 16, No.
2, pp. 179216, 1997.

o X &

19923 ¥Ry Rt AR e Hat
1994 E3gcim Akl Tt Hat
19983 E3hg ool Abel-gabn upay
19983 ~ A AARF A FHU(ETRD) 3
Fel T eSS 7)FATE F
A1ZYY Al2gEgdry Al
gavd
T4 2ol : parametric design, feature-bas-
ed modeling and pgeometric
reasoning in intelligent CAD,
Web enabled CAD, and com-
puler supported collaborative
wark

d 3 =

19774 A&t A1) 28t At
19794 AEe et 4kej B3 44k
1985'd U. of Central Florida “}A}
1985t ~ 19883 Rochester E=}ui2}@
225
19883 -~ & A ¥alaalialw 4] 3-8
 ZusRRy
FHA)-Bo} : feature-based parametric model-
ing, featurc-based NC ma-
chining, 2D & 3D geometric
constraint solving, design pro-
ccss  automation, and  virtual
product modeling




