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Geometric charts with bootstrap-based control limits
using the Bayes estimator
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Abstract

Geometric charts are effective in monitoring the fraction nonconforming in high-quality processes. The in-
control fraction nonconforming is unknown in most actual processes; therefore, it should be estimated using
the Phase I sample. However, if the Phase I sample size is small the practitioner may not achieve the desired
in-control performance because estimation errors can occur when the parameters are estimated. Therefore, in
this paper, we adjust the control limits of geometric charts with the bootstrap algorithm to improve the in-control
performance of charts with smaller sample sizes. The simulation results show that the adjustment with the
bootstrap algorithm improves the in-control performance of geometric charts by controlling the probability that
the in-control average run length has a value greater than the desired one. The out-of-control performance of
geometric charts with adjusted limits is also discussed.

Keywords: Bayes estimator, bootstrap algorithm, control limits, geometric chart, statistical pro-
cess control

1. Introduction

Control charts are highly effective for monitoring the quality of manufacturing processes. The basic
assumption of the control chart is that in-control process parameters are known or can be accurately
estimated; however, they should be estimated using the Phase I sample if the parameters are unknown.
Then they will be used in Phase II to detect a process change. Jensen et al. (2006) and Psarakis et al.
(2014) reviewed the performance of charts with estimated parameters.

Geometric charts are particularly useful for monitoring high-quality processes. There have been
several studies on the performance and estimation effects of geometric charts for which parameters
have been estimated. Yang et al. (2002) investigated the performance of geometric charts with esti-
mated control limits and showed that the effect on the alarm probability can be significant even with
sample sizes as large as 10,000. Tang and Cheong (2004) studied the effects of estimation error on
geometric chart performance when a sequential sampling scheme was employed.

A widely used method to measure control chart performance is to use the average run length
(ARL), where the run length is defined as the number of chart statistics plotted until the chart signals.
ARL is constant under the known parameters assumption; however, this metric becomes a random
variable when estimating in-control parameters and determining control limits. The control chart
performance will vary among practitioners because it depends on the estimated parameters when the
in-control parameters are estimated. This is because practitioners use different Phase I data sets, which
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result in different parameter estimates, control limits, and ARL values. Therefore, charts are evaluated
and the amount of Phase I data necessary for the desired chart performance is determined based on the
expected value of the ARL (AARL) and the standard deviation of the ARL (SDARL). The SDARL
metric accounts for the practitioner-to-practitioner chart variability, with lower values indicating less
variation in the ARL values between practitioners. More details about the SDARL metric can be
referred to Saleh er al. (2015).

Zhang et al. (2013) evaluated the in-control performance of the geometric chart using the SDARL,
and showed that larger Phase I sample sizes were needed to obtain small SDARL values. They also
recommended using Bayesian methods to address the lack of observable nonconforming items in the
Phase I sample and to use practitioner knowledge about in-control parameter values.

Saleh er al. (2015) evaluated the in-control performance of an exponentially weighted moving
average (EWMA) chart in terms of SDARL and percentiles of the ARL distribution when process pa-
rameters were estimated. They showed that the EWMA chart required a larger volume of Phase I data
than recommended in previous studies to sufficiently reduce the variation in the chart performance.
Because of practical limitations in the amount of Phase I data, they recommended a procedure based
on the bootstrap approach proposed by Jones and Steiner (2012) and Gandy and Kvalgy (2013). The
approach involves applying a bootstrap algorithm to the control chart to ensure that the probability
that the in-control ARL value exceeds the target value is a constant. Since Saleh et al. (2015), many
studies have used the bootstrap algorithm to adjust the control limits of other control charts. Faraz et
al. (2015) proposed designing a method for the S >-chart and investigated the effect from adjusting the
control limits. Zhao and Driscoll (2016) adjusted the control limits of the c-chart using the bootstrap
approach, resulting in improved in-control ARL performance. Faraz ef al. (2017) recently applied the
bootstrap algorithm to adjust the np-chart and show that in-control ARL values were greater than the
desired value with a certain probability.

For high-quality processes, more accurate parameters can be estimated with a larger the sample
size. However, this is extremely difficult in real processes. Therefore, in this paper, we apply the
bootstrap algorithm to the geometric chart to accurately estimate parameters with small sample sizes.
We use the Bayes estimator instead of the maximum likelihood estimator (MLE) when applying a
bootstrap approach. This enables us to construct control limits even when nonconforming items are
not observed in the Phase I sample. We also evaluate the in-control and the out-of-control performance
of geometric charts with adjusted limits.

In Sections 2 and 3, we give an overview of the geometric chart with known parameter and un-
known parameter. Section 4 describes the MLE, which is generally used to estimate the unknown
parameter of a geometric chart, and the Bayes estimator, which complements the MLE, considering
its limitations. In Sections 5 and 6, we present the in-control performance of the geometric chart with
the estimated parameter and introduce the bootstrap method for obtaining adjusted control limits for
geometric charts. In Section 7, a simulation study is performed to compare the performance of the ge-
ometric chart with and without bootstrap adjusted control limits. Finally, we present the conclusions
in Section 8.

2. The geometric chart with known p,

With the continuous advancements in manufacturing technology, many processes are now character-
ized by a very small proportion p of nonconforming items. For these high-quality processes, many
control charting methods have been recommended for monitoring the proportion of nonconforming
(Szarka and Woodall, 2011). The geometric chart is more effective than the traditional p and np charts
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when monitoring high-quality processes. This chart is also frequently called the cumulative count of
conforming chart in an statistical process control (SPC) literature, because it is based on the number
of items sampled between pairs of nonconforming items.

Let Y; be the number of conforming items between the (i — 1) and i nonconforming item with
the in-control probability of a nonconforming item py. Then, Y; is a geometric random variable with
parameter pg. Thus, the probability mass function of ¥; is given by the following:

g =0 —=poYipo, ¥i=0,1,...,

with P(Y; 2 y;) = (1 — po)”.

To establish a control chart, it is necessary to set lower control limits (LCL) and upper control
limits (UCL). The geometric chart will give a signal at i if ¥; < LCL or Y; > UCL, where LCL and
UCL are integer values. Let a,,, ; denote the false alarm rate for being below the lower control limit
and «,, y denote the false alarm rate for exceeding the upper control when p is known. We cannot
obtain probability control limits that satisfy the exact desired value for the false alarm rate, @ because
of the discrete nature of the geometric distribution. Instead, the probability control limits, which
have a false alarm rate less than the desired false alarm rate @, can be obtained from the following
equations:

LCL

@y = P(Y; SLCL | po) = D (1= po)''po <
»i=0

s

R

@pou = P(Y; 2 UCL | po) = Z (1= poYipo <
yi=UCL

s

(SIRS]

which are equivalent to

a a
1 —(1 - po)ttt < 5 and (1 - po)t < 7 2.1

From (2.1), we can obtain the control limits for the geometric chart as:

In(1 — a/2)

2.2
In(1 = po) @2

LCL:{

—1J and UCL:{ In(a/2) }

In(1 = po)

where | x] denotes the greatest integer less than or equal to x (called a floor function), and [x] denotes
the least integer greater than or equal to x (called a ceiling function).

3. The geometric chart with unknown p,

The control limits in (2.2) are valid only when parameter py is known. When pg is unknown, it must
be estimated through the Phase I sample to set the control limits. Note that the estimated control limits
can differ from the actual values when setting the control limit with a small sample. As parameter pg
in (2.2) is replaced by py, the control limits for the geometric chart when parameter pg is unknown
are:

In(l - a/2)

3.1
In(1 — o) ©-1)

LCL(N) = {

1J and Iﬁ(N):{ In(a/2) }

In(1 = po)
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where N is the number of nonconforming items among a total of m items sampled in Phase 1.
In Phase II, if the fraction nonconforming is p, the alarm probability y(N) using the control limits
in (3.1) can be expressed as:

¥(N) = P{Y; <LCL(N) | N = n} + P{¥; > UCL(N) | N = n},

where Y; is a geometric random variable with parameter p, and N is a binomial random variable with
parameters m and py.

To evaluate the performance of control charts with estimated limits, we use the average of ARL
(AARL) and the SDARL. The run length (denoted by R) is the number of points plotted on the chart
until an out-of-control signal is given. The conditional distribution of R given N is geometric with
parameter y(N). Hence, the ARL is

ARL(N) = L.
Y(N)

In addition, the AARL and the SDARL are observed to have the form:

N _ SELI ST
AARL—ENL/(N)] and SDARL = \/EN[VZ(N)] Ey [y(N)], (3.2)

respectively, where

1 m 1 m\ |, n m
Ex [W} =2 %(n)pou = po)"" + (1= po)

n=1

and

1 S ] m n m—n m
Ey LTN)} = Z 7%(H)Po(l = po)"" + (1 = po)".

n=1

When N = 0 in above equations, we use the strategy used in Zhang et al. (2013) to signal at each
nonconforming item, that is y(N = 0) = 1.

4. Estimators of p,

When the fraction of nonconforming pg is unknown, po must be estimated through the Phase I sample
to establish the control limits. Many studies have used the MLE as an estimator for py, which is:

=2, @.1)
m

As in Zhang et al. (2013) and Lee et al. (2013), the problem with using the MLE is that control limits
are not defined when nonconforming items are not observed in the Phase I sample of when N = 0.
This is especially common in the high-quality processes that are the focus of this paper. To solve
this problem, Zhang et al. (2013) used the Bayes estimator instead of the MLE. Other studies that
also used the Bayes estimator for the fraction nonconforming are: Hong and Lee (2015), Zhang et al.
(2017), and Han et al. (2018).
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To perform the bootstrap algorithm in this paper, we use the Bayes estimator instead of the MLE,
as the bootstrap algorithm cannot be carried out when nonconforming items are absent in the Phase |
sample, which results in py = 0. We discuss this further in Section 6. In addition, the Bayesian ap-
proach is advantageous, since it incorporates prior information about the fraction nonconforming into
the Bayes estimator through a prior distribution based on practitioner beliefs or experiences. However,
it is updated to a posterior distribution because the prior distribution is set to the practitioner’s prior
knowledge and the data is observed.

The prior distribution for pg is usually assumed by a beta distribution with parameters a and b,
Beta(a, b). When we use a beta prior distribution after observing the Phase I sample, our posterior
distribution becomes a beta distribution Beta(a+ N, b+m—N). Thus, the mean of the prior distribution
denoted by py, is as:

a

Pop= ——. (4.2)

and the Bayes estimator of py is the mean of the posterior distribution, denoted by pg g, which is

N+a

_ 4.3
m+a+b “.3)

Pop =

The beta distribution has various forms depending on parameters a and b: it is strictly decreasing
whena < 1 and b > 1; U-shaped whena < 1 and b < 1; and unimodal whena > 1 and b > 1. Because
Ppo is very small in this paper, we consider only 1 and 2 for the values of a to facilitate arriving at a
low value for the prior mean.

Besides using the Bayes estimator of the in-control parameter, recent studies for the Bayesian
approach in SPC are as follows. Pan and Rigdon (2012) used a Bayesian approach to select possible
change point models for multivariate process. Tan and Shi (2012) also proposed Bayesian approach
to identify the means that shifted and the direction of the shifts for multivariate charts. Apley (2012)
proposed a Bayesian method for graphically monitoring process means. Kumar and Chakraborti
(2017) proposed a Bayesian approach to establish control limits for control charts to monitor the
times between events following an exponential distribution.

5. In-control performance of the geometric chart with the estimated parameter

When setting the control limits with the estimate parameter, we consider the in-control performance
of the geometric charts using the AARL and SDARL to investigate problems. Table 1 gives the in-
control AARL (AARL ) and SDARL (SDARL)) values of geometric charts for the m and p, values.
The values of AARL, and SDARL, were computed using (3.2). For these results, we use the MLE
for pg and assume the desired in-control ARL (ARLy) is 200. The last row in the table, m = co, refers
to the case in which the in-control process parameter pg is known. We note that, the ARL values for
each pg can deviate from 200 (more precisely, values are greater than 200) since we use the control
limits in (3.1) in this paper.

For fixed py values, as the sample size m increases, the AARLy values do not approximate the
desired ARL values even when m is sufficiently large. For example, when py = 0.0005 and m =
2,000,000, the AARL value is 209.8, which does not come close to the value for the known-parameter
case. As m increases, the SDARL values tend to decrease; however, the convergence rate is very slow,
especially when pg is very small (pg = 0.0001). Zhang ef al. (2014) also suggested that SDARL,
values within 10% of ARL values may be adequate for practitioners to have confidence about the
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Table 1: Values of AARL, (upper entry) and SDARL, (lower entry)

m Po
0.0001 0.0005 0.001

777 163.6 195.8

10,000 93.6 88.3 91.5
119.6 183.7 2146

20,000 88.7 81.3 88.9
160.9 2033 2232

50,000 85.9 74.1 74.2
179.8 207.5 2255

100,000 79.0 61.0 62.1
1912 209.4 226.0

200,000 70.0 4738 49.6
201.6 209.8 2228

2,000,000 33.3 13.6 16.5
- 200.1 200.1 2223

0.0 0.0 0.0

AARLy = the in-control AARL (the expected value of the average run length); SDARL( = the in-control SDARL (the
standard deviation of the average run length).

Table 2: The percentage of geometric charts with ARL values below the targeted ARL,

m Po

0.0001 0.0005 0.001

10,000 64.01 51.10 48.23
20,000 46.58 44.33 44.81
30,000 55.43 43.53 45.31
40,000 46.71 44.21 45.60
50,000 51.11 44.50 45.98
60,000 45.56 45.25 46.19
70,000 48.37 38.97 46.69
80,000 44.71 39.35 46.94
90,000 46.66 40.11 47.37
100,000 44.33 40.33 47.45

ARL = the in-control ARL (average run length).

predictability of the Phase I performance, although it may still reflect significant variation. Table 1
shows that a smaller py value requires a larger sample size to satisfy this condition. For example,
the value of m that is required to satisfy the condition is 2,000,000 when values of pg are 0.0005 and
0.001; and an m of more than 2,000,000 is required when pg is 0.0001. In practice, it is desirable to
select a sample size that is large enough to obtain acceptable SDARL values. However, a very large
sample size is often not realistic because of time and cost.

We also perform a simulation study to investigate the variability of the in-control ARL values when
using the estimated control limits. In this study, for each Phase I sample of size m and py, an ARL,
value is obtained that repeats 10,000 times. The desired ARLj is assumed to be 200, and the MLE is
used to estimate py. Table 2 shows the percentage of geometric charts with ARL values below the
targeted ARLy, which is the ARL value for the case in which the in-control process parameter py is
known. As in Table 1, the targeted ARL values for pg = 0.0001, 0.0005, and 0.001 are 200.1, 200.1,
and 222.3, respectively. Table 2 shows that in all cases except when py = 0.0005 and m = 70,000 and
80,000, more than 40% of geometric charts have ARL values below the targeted ARLy. This means
that more than 40% of practitioners would have a false alarm rate greater than the desired value. This
is a serious problem that requires other ways to construct control charts with estimated parameters. In



Geometric charts with bootstrap-based control limits 71

the next section, we introduce the bootstrap method to adjust the control limits of geometric charts.

6. The bootstrap approach

To overcome the problem of low ARL values when using estimated parameters, we apply the boot-
strap algorithm proposed by Jones and Steiner (2012) and Gandy and Kvalgy (2013). This algorithm
can adjust the geometric control limits so that the in-control ARL values are equal to or greater than
the targeted ARL value, Ao, with at least a certain probability, say 1 — p. Therefore, it is expressed
as:

P{ARL) > Ap} > 1 - p. 6.1)

In this paper, we set p = 0.1 so that more than 90% of the values are larger than the targeted ARL
value.

Saleh et al. (2015) and Faraz et al. (2015) recently adjusted the control limits of the EWMA chart
and S 2- chart, respectively, using the bootstrap algorithm. Zhao and Driscoll (2016) and Faraz et al.
(2017) also adjusted the control limits of the c-chart and the np-chart. The bootstrap algorithm for
adjusting the control limits of the geometric chart is summarized as:

1. Set the prior distribution for py as Beta(a, b), and from the Phase I sample, estimate the fraction
defective pg as pg = (N + a)/(m + a + b) in (4.3).

2. Generate B bootstrap samples N}, N3, ..., Np from B(m, po), and calculate ﬁ(*), ;= (Ni+a) /(m+a+b)
fori=1,2,...,B, where B is a large number, for example B = 1,000.

3. Find the p"* percentiles of the Py, (say, pp) and find (1 — p)" percentiles of the Py, (say, py)-
4. Calculate the adjusted control limits as

In(1 — a/2)

[CL' = Y2 4| and UCL = | m@/2) |
In(1 - p,

In(1 - p;

Therefore, the probability of observation out-of-control limits a'; and the average run length ARL"
are computed as

— —— 1
@y=(1-p"" —(1-p"*"*+1 and ARL = —,
(02N
p
respectively.

Note that if N = 0 when using the MLE for py in step 1, we cannot generate the valid bootstrap
samples in step 2. However, this problem does not occur when using the Bayes estimator.

7. The performance of the geometric chart with unadjusted and adjusted control
limits

In this section, a simulation study is performed to compare geometric chart performance with and

without bootstrap adjusted control limits. First, we compare the in-control performance for each pg

and m. As a result of the simulation repeating 10,000 times without adjustment (denoted by “Un-
adj.”) and with adjustment (denoted by “Adj.”), we have 10,000 ARL, values for “Unadj.” and “Ad;j.”
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Table 3: Comparison of the percentage of geometric charts with in-control ARL values below the targeted
ARL,, for charts with unadjusted and adjusted control limits

; m
Mean 10,000 20,000 50,000 100,000

Unadj. 64.01 7658 5111 4433

000005 Beta(1, 19999) 0.00 0.00 0.65 0.65

o ow o on oo
. eta(l, 5 . . .

(ARLp, =200.12) Adj. 0.0001 Beta(2, 19998) 0.00 0.02 0.97 2.87

0.0002 Beta(1, 4999) 816 274 12.95 5726

: Beta(2, 9998) 7.70 12.99 13.29 13.52

Unadj. 51.10 4433 4450 3033

Beta(1, 3999) 077 0.29 153 1.40

R
. eta(l, K . . K

(ARLp, = 200.10) Adj. 0.0003 Beta(2, 3998) 0.97 1.17 3.30 2.85

0.001 Beta(1, 999) 9.65 6.20 792 470

: Beta(2, 1998) 12.91 13.41 8.13 5.15

Unadj. 48723 4481 4595 4745

0.0003 Beta(1, 1999) 0.95 115 1.49 1.40

s on on v o
. eta(l, . . . K

(ARLp, =222.34) Adj. 0.001 Beta(2, 1998) 2.89 2.44 2.40 235

0002 Beta(1, 499) 5.89 728 4.60 2.08

: Beta(2, 998) 13.31 770 529 3.84

ARL = average run length; Unadj. = unadjusted limits; Adj. = adjusted limits.

respectively. We use B = 1,000 for the bootstrap algorithm. We set the targeted ARL, value as
Ap = 200, but when py is 0.0001, 0.0005, and 0.001, the true ARLq values (denoted by ARL,,) are
200.12, 200.10, and 222.34, respectively.

Table 3 shows the proportion of the 10,000 ARLq values that are less than the ARL, values.
The purpose of the bootstrap adjustment is to achieve good performance even with a small amount of
Phase I data, but since we consider a very small fraction nonconforming in the high quality process, the
simulation should be performed with a somewhat larger m to attain a degree of accuracy. Therefore,
we set m as 10,000, 20,000, 50,000, and 100,000. We note that the MLE in (4.1) is used in the case of
“Unadj.”, whereas the Bayes estimator in (4.3) is used in the case of “Adj.”. It is clear that the choice
of a prior distribution should incorporate the practitioner’s knowledge of py as accurately as possible.
In this simulation, combinations of (1, ) and (2, b) for parameters of the beta prior distribution, are
used to ensure that the prior mean is equal to py. For example, when py = 0.0001, if the parameter a
is set to 1, b is determined at 9999 because the mean of the prior distribution in (4.2) is the same as
po. We also simulated a combination of cases that the prior mean is (1/2)pg (that is, the prior mean is
less than pg) and 2py (that is, the prior mean is greater than py). We will investigate the effect of the
parameters of the prior distribution in a future study.

Table 3 shows that, in the case of “Unadj.”’, the percentages of geometric charts that result in
ARL, values below ARL, are all over 40%. However, for “Adj.”, in the prior distribution except
for the prior mean greater than py, the percentage of values is less than 10%. The results show that
the desired in-control performance in (6.1) is well satisfied; however, there are some cases that the
percentage value is greater than 10% when the prior mean is greater than py. This result indicates that
the effect of parameter estimation increases when we set the parameters of the prior distribution to
have an overestimated prior mean.
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Figure 1: Boxplots of in-control ARL with unadjusted and adjusted control limits when m = 20,000, (a) po =
0.0001, ARL,, = 200.12, Beta(1, 9999) for the prior distribution; (b) py = 0.0005, ARL,, = 200.10, Beta(l,
1999) for the prior distribution; (c) py = 0.001, ARL,,) = 222.34, Beta(1, 999). The boxplots show the Oth, 10th,
25th, 50th, 75th, and 100th percentiles. ARL = average run length.

To compare the in-control performance of geometric charts with unadjusted and adjusted control
limits, boxplots of the in-control ARL for each py = 0.0001, 0.0005, and 0.001 at m = 20,000 are
illustrated in Figure 1. The reference line (the red line) in Figure 1 corresponds to the targeted ARL,,
values for each py. Parameter a of the prior distribution is set to 1. When comparing “Unadj.” and
“Adj.” for each py, the plots show that all the 10th percentiles (the blue line) of “Unadj.” are below the
reference line, while all of “Adj.” are above the reference line. Table 1 shows that the Phase I sample
of m = 20,000 without adjustment does not provide an acceptable in-control performance; however,
an adjustment using the bootstrap approach improves in-control ARL performance by reducing the
percentage of charts with ARL, values below the targeted ARL,,, value.

An interesting finding in previous studies about adjustment using the bootstrap approach is that
the control charts with adjusted control limits have more variable in-control ARL distribution than
control charts based on unadjusted control limits. Figure 1 shows that the in-control ARL distribution
with adjusted control limits also has a larger variability than the distribution with unadjusted control
limits. Saleh et al. (2015) therefore maintained that control charts based on adjusted control limits
result in an acceptable increased variability in the in-control ARL distribution as long as the out-of-
control performance is not considerably worse than that based on unadjusted control limits. We note
that the purpose of adjustment using the bootstrap approach is to improve in-control performance.

Table 4 shows a comparison of the out-of-control performance of geometric charts with unad-
justed and adjusted control limits. Similar to the in-control performance, the simulation is repeated
10,000 times, and the number of bootstrap samples B is set to 1,000. Moreover, the MLE is used
for unadjusted control limits, and the Bayes estimator is used for adjusted control limits. The out-of-
control ARL is used as a metric for confirming the out-of-control performance for the case of shift
from py = 0.0001, 0.0005, and 0.001 to each p; when m = 10,000, 20,000, and 50,000. The prior
distribution for each pq is used as a beta distribution with parameter a of 1. In Table 4, as the shift size
increases in all py and m cases, the out-of-control ARL decreases for control charts with both unad-
justed and adjusted control limits. A larger shift size allows for a faster detection and prediction of the
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Table 4: The out-of-control ARL performance when p, = 0.0001, 0.0005, and 0.0001

m
p1 10,000 20,000 50,000
Unadj. Adj. Unadj. Adj. Unadj. Adj.
0.0002 114.06 314.99 153.91 343.85 187.19 308.44
po = 0.0001 0.0003 113.25 210.18 129.38 229.60 136.97 206.16
with Beta (1, 9999) 0.0004 97.35 157.75 101.91 172.32 103.49 154.74
0.0005 81.62 126.30 82.32 137.95 82.92 123.88
0.001 194.65 344.68 212.30 323.37 220.43 287.72
o = 0.0005 0.0015 144.96 230.63 148.16 216.14 148.76 192.17
with Beta (1, 1999) 0.002 109.73 173.06 111.36 162.19 111.68 144.22
’ 0.0025 87.92 138.51 89.17 129.82 89.42 115.45
0.003 73.33 115.48 74.37 108.24 74.58 96.26
0.002 253.01 411.91 252.71 379.29 249.84 330.89
0.0025 212.51 329.96 206.54 303.85 201.29 265.12
po = 0.001 0.003 178.48 275.01 172.56 253.25 167.88 220.98
with Beta (1, 999) 0.0035 153.19 235.74 147.98 217.09 143.94 189.44
0.004 134.09 206.28 129.52 189.97 125.98 165.78
0.005 107.32 165.04 103.66 152.00 100.83 132.66
ARL = average run length; Unadj. = unadjusted limits; Adj. = adjusted limits.
Out-of-Control ARL Out-of-Control ARL Out-of-Control ARL

200
|
200
|
|
|
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Figure 2: Boxplots of the out-of-control ARL with unadjusted and adjusted control limits when m = 20,000,
po = 0.0005, using Beta(1, 1999), and (a) p; = 0.001, (b) p; = 0.002, (c) p; = 0.003. ARL = average run length.

out-of-control state. Further, in this case, it is confirmed that the difference between the out-of-control
ARL of “Unadj.” and “Adj.” is reduced.

Boxplots of the out-of-control ARL in Figures 2 and 3 confirm the out-of-control ARL perfor-
mance. To visualize the effect of the shift size, Figure 2 illustrates shifts from py = 0.0005 to
p1 = 0.001,0.002, and 0.003 when m = 20,000. Also, to visualize the effect of the Phase I sam-
ple size, in Figure 3, we set m = 10,000, 20,000, and 50,000 when py = 0.0005 shifts to p; = 0.001.
Similar to the pattern in Table 4, as the shift size increases from (a) to (c) in Figure 2, the overall out-
of-control ARL values decrease, and the differences in out-of-control ARL values based on “Unadj.”
and “Adj.” also decrease. We can see that the variability (including the outliers) for the control limits
with adjustment is greater than that without adjustment; in addition, variability decreases as the shift
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Figure 3: Boxplots of the out-of-control ARL with unadjusted and adjusted control limits when p, = 0.0005,
p1 = 0.001, using Beta(1, 1999), and (a) m = 10,000, (b) m = 20,000, (c) m = 50,000. ARL = average run
length.

Table 5: The mode of adjusted control limits to guarantee that P(ARL, > 200) > 0.9

o LCL UCL m mode of LCL mode of UCL

00001 10,000 15(40.6) 119827(98.0)

O 24 59912 20,000 17(27.4) 179741(66.8)

with Beta (1, 9999) 50,000 17(17.2) 119827(34.1)

0.0003 10,000 2(49.5) 23963(34.1)

O 4 11980 20,000 2(50.8) 21966(20.4)
with Beta (1, 1999) 50,000 2(46.5) 15575(9.4)

0,001 10,000 0(66.4) 10982(20.4)

with Beta (1. 999) 1 5989 20,000 0(52.7) 8386(11.0)
. 50,000 1(66.6) 7637(6.1)

ARL = average run length; LCL = lower control limits; UCL = upper control limits.

size increases. In Figure 3, as m increases, the difference between the out-of-control ARL values with
unadjusted and adjusted control limits decreases; in addition, the variability of the out-of-control ARL
values also decreases.

Table 5 shows the mode of the control limits obtained by repeating the bootstrap algorithm 10,000
times with the number of bootstraps B = 1,000 so that practitioners can refer to the following table
without performing the bootstrap algorithm according to each py and m. In the table, values of LCL
and UCL denote the unadjusted control limits, and values in parentheses denote the percentage of
occurrence at the mode. We hope that practitioners can more efficiently use geometric charts (with
fewer samples) by referring to Table 5.

8. Conclusion

In a high-quality process in which defects are rarely observed, the geometric chart can quickly detect
process deterioration by observing the number of conforming items between the two nonconforming
items. Since the in-control fraction defective pg is not known in most actual processes, the fraction
defective should be estimated with the Phase I sample. If the sample size is insufficient, estimation
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errors occur when the parameter is estimated; therefore, a practitioner may not achieve the desired
in-control performance. However, due to time and cost limitations, it may be difficult to use sufficient
data in an actual process. In this paper, we suggest an adjusting method for control limits of a geomet-
ric chart using the bootstrap algorithm proposed by Jones and Steiner (2012) and Gandy and Kvalgy
(2013) to improve the performance of a geometric chart with fewer Phase I data.

Many studies have used the MLE to estimate fraction defective py. However, from Zhang et al.
(2013) and Lee et al. (2013), it is understood that when using the MLE, control limits cannot be
defined when nonconforming items are not observed in the Phase I sample. This problem occurs
frequently when estimating the fraction defective py as the MLE since the geometric chart is often
used in high-quality processes. Therefore, we have suggested an adjustment method based on the
Bayes estimator.

From the simulation results comparing the performance of the geometric chart with unadjusted and
adjusted control limits, we confirmed that using adjusted control limits improved the in-control ARL
performance, as the percentage of geometric charts with in-control ARL values below the targeted
ARL value was achieved above a certain probability. It was also observed that when using adjusted
control limits, the ARL distribution had a larger variability than with unadjusted control limits and
that the adjustment worsened the out-of-control performance. However, there was no large difference
between instances with and without adjustment.

In conclusion, we recommend using adjusted control limits with the bootstrap algorithm when
using a geometric chart in a high-quality process with a relatively small Phase I sample size. We hope
that the adjustment method for control limits using the bootstrap algorithm is applicable to other types
of control charts in addition to the geometric chart of this paper.
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