• Title/Summary/Keyword: geodesics

Search Result 66, Processing Time 0.02 seconds

FINSLER SPACES WITH INFINITE SERIES (α, β)-METRIC

  • Lee, Il-Yong;Park, Hong-Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.567-589
    • /
    • 2004
  • In the present paper, we treat an infinite series ($\alpha$, $\beta$)-metric L =$\beta$$^2$/($\beta$-$\alpha$). First, we find the conditions that a Finsler metric F$^{n}$ with the metric above be a Berwald space, a Douglas space, and a projectively flat Finsler space, respectively. Next, we investigate the condition that a two-dimensional Finsler space with the metric above be a Landsbeg space. Then the differential equations of the geodesics are also discussed.

HARMONIC MORPHISMS AND STABLE MINIMAL SUBMANIFOLDS

  • Choi, Gundon;Yun, Gabjin
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-33
    • /
    • 2006
  • In this article, we study the relations of horizontally conformal maps and harmonic morphisms with the stability of minimal fibers. Let ${\varphi}:(M^n,g){\rightarrow}(N^m,h)$ be a horizontally conformal submersion. There is a tensor T measuring minimality or totally geodesics of fibers of ${\varphi}$. We prove that if T is parallel and the horizontal distribution is integrable, then any minimal fiber of ${\varphi}$ is volume-stable. As a corollary, we obtain that any fiber of a submersive harmonic morphism whose fibers are totally geodesics and the horizontal distribution is integrable is volume-stable. As a consequence, we obtain if ${\varphi}:(M^n,g){\rightarrow}(N^2,h)$ is a submersive harmonic morphism of minimal fibers from a compact Riemannian manifold M into a surface N, T is parallel and the horizontal distribution is integrable, then ${\varphi}$ is energy-stable.

  • PDF

CURVES ORTHOGONAL TO A VECTOR FIELD IN EUCLIDEAN SPACES

  • da Silva, Luiz C.B.;Ferreira, Gilson S. Jr.
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1485-1500
    • /
    • 2021
  • A curve is rectifying if it lies on a moving hyperplane orthogonal to its curvature vector. In this work, we extend the main result of [Chen 2017, Tamkang J. Math. 48, 209] to any space dimension: we prove that rectifying curves are geodesics on hypercones. We later use this association to characterize rectifying curves that are also slant helices in three-dimensional space as geodesics of circular cones. In addition, we consider curves that lie on a moving hyperplane normal to (i) one of the normal vector fields of the Frenet frame and to (ii) a rotation minimizing vector field along the curve. The former class is characterized in terms of the constancy of a certain vector field normal to the curve, while the latter contains spherical and plane curves. Finally, we establish a formal mapping between rectifying curves in an (m + 2)-dimensional space and spherical curves in an (m + 1)-dimensional space.

THE SET OF ZOLL METRICS IS NOT PRESERVED BY SOME GEOMETRIC FLOWS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.855-861
    • /
    • 2019
  • The geodesics on the round 2-sphere $S^2$ are all simple closed curves of equal length. In 1903 Otto Zoll introduced other Riemannian surfaces with the same property. After that, his name is attached to the Riemannian manifolds whose geodesics are all simple closed curves of the same length. The question that "whether or not the set of Zoll metrics on 2-sphere $S^2$ is connected?" is still an outstanding open problem in the theory of Zoll manifolds. In the present paper, continuing the work of D. Jane for the case of the Ricci flow, we show that a naive application of some famous geometric flows does not work to answer this problem. In fact, we identify an attribute of Zoll manifolds and prove that along the geometric flows this quantity no longer reflects a Zoll metric. At the end, we will establish an alternative proof of this fact.