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JACOBI OPERATORS ALONG
GEODESICS IN 2-STEP NILMANIFOLDS

KEUN PaRK

1. Introduction

Let N be a 2-step nilpotent Lie algebra with an inner product {,},
and N its unique simply connected Lie group with the left invariant
metric determined by the inner product {,} on N. We call this N
a 2-step nilmanifold. The meaning of N being 2-step nilpotent is
IM,[V,N]] = 0. The center of A is denoted by Z. Then, A can
be expressed as the direct sum of the subspaces Z and its orthogonal
complement ZL.

For Z in 2, a skew-symmetric linear transformation 3(Z)} : 24 —
21 is defined by j(Z)X = (adX)*Z for X € 2+, or equivalently

G(2)X,Y)={{X,Y],Z) for X,V eZ*

This transformation was defined by A. Kaplan[K1,K2] to study the
geometry of groups of Heisenberg type, those groups for which j(Z)? =
—~1Z1%:d for each Z € Z.

It is well-known that the Jacobi operator plays a fundamental role
in Riemannian geometry. In [BTV], it was showed that the Jacobi
operator along each geodesic of groups of Heisenberg type has constant
eigenvalues.

In this note, we will show thst if N has 1-dimensional center, then
for any geodesic y(t) in N with 4(0) = e (identity of N) and any t € R
there exists an isometry ¥(t) of N such that v'(¢) = d(£)(¢'(0)). Using
this fact, we will show that the Jacobi operator along each geodesic of
2-step nilpotent Lie group with a left invariant metric has constant
eigenvalues if N has 1-dimensional center. And also, we will give an

Received October 2,1996.

Supported in part by the Basic Sciences Research Institute of the University of
Ulsan .

175



176 iKeun Park

example of 2-step nilpotent Lie group with 2-dimensional center which
doesn’t have this property.

2. Preliminaries

In this section, we will give some known results about 2-step nilpo-
tent Lie groups with a left invariant metric. Throughout this section,
we denote A be a 2-step nilpotent Lie algebra with an inner product
{,), and N its unique simply connected Lie group with the left invariant
metric induced by the inner product {,) on N.

Recall that for Z, € Z, a skew-symmetric linear transformation
J(Zo) : 24 — Z+ is defined by {j(Zo)X,Y) = {{X, Y], Z,) for X,Y €
Z4. Let {£6:1¢, £8q1,-- -, +8,2) be the distinct eigenvalues of 3 Z)
with each 8 > 0, and let {W;,1¥,,--- | W, } be the invariant subspaces
of j(Zy) such that j(Z))* = —6%:d on Wy for each &k = 1,2,--- ,n.
Then, Z+ can be expressed as a direct sum of 1V, ’s and kernel of
3H(Zo), that is Z+ = Kery(Zy) @ ®7_, Wy and j(Zo)? = —6%id on each
Wi leads

sin{#6; )

(2.1) e20) = cos(tfy )ud + p
&

3(Zo)

on W, for each k. And also, if N has 1-dimensional center and Z, # 0,
then Kerj(Zo) = {0}, so Z+ = @7_,W,.

Let 4(t) be a curve in N such that ¥(0) = e(identity element of N)
and 9'(0) = X + Zy where X € Z+ and Z, € Z. Sinceexp: N —
N is a diffeomorphism, the curve 4(¢) can be expressed uniquely by
¥(t) = exp(X(t) + Z(¢)) with

X(t)e 24, X'(0)=X,, X(0)=0
Z(YeN, Z'0)=2Z,, Z(0)=0.

A Kaplan[K1,K2} showed that the curve y(¢) is a geodesic in N if and
only if

(2.2) X"(t) = j(Zo)X'(t),

Z(8) + LIX'(0), X(0)] = Z.
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The solution to this equation was obtained by P. Eberlein(See [E]), and
he obtained the following(See Propositin 3.2 [E]).

(2.3) v'(t) = dly ) (X' (t) + Zo)
where I,(;; 1s the left translation by (¢), and it is trivial that
(2.4) X'(t) = N2 X,
from Kaplan’s equations (2.2).
If XY are elements in A regarded as left invariant vector fields

on N, then the real valued map (X,Y) on N given by (X,Y}(n) =
{X(n),Y(n)) is constant. So, the formula([H],p.48)

(V\Y,Z) = %{X(Y, Z) + (X, [Z.Y]) + Y(X. 2)
+{(¥,[Z, X]) = Z(Y. X} = (Z,[V, X])}

for the covariant derivative Vx1” of smooth vector fields on a Rie-
mannian manifold can be 1educed to

VxY =

Lo =

{{AY] = (adX)'Y — («dYY' X} for X, Y e N.
From this, 1t is routine to show that

(2.5)
ViV = %[x,y] for X,Y € 2+,

) 1
VxZ =VzX =-23(2)X for XezlzeZz,
VzZ*" =0 for Z,Z% € Z.

And also, from (2.5), the formulas for the curvature tensor given by

R(£1,62)6 = =V, 6,083 + Ve, (Ve €3) — Vi, (Ve £a)

can be obtained as follows(See [E]).



178 Keun Park

(2.6)
ROXY)X = i YDX® ~ 23(Y, X*DX + 23(1%, XY
for X,Y,X*e 2%,
R(X,Y)Z = ~{[X,5(2)¥] + 7V, (2)X]
R(X,2)Y = —i-[x, H(Z)Y] for X,Ye€Ziand Ze€Z.
R(Z,2°)X =~ Zi(Z)i(2)X + {i(2)3(2")X

R(X,2)2* = ~éj(Z)j(Z*)X for Xe2t and Z,2° ¢ o
R(Z],ZQ)Zg =0 fOl‘ Zl,ZQ,Za c Z

3. Main Results

LEMMA 3.1. Let N be a simply connected 2-step nilpoict.. Lie
group with a left invariant metric. Assume that N has 1-dimeunsional
center. For each t € R, let T(t) : 2+ — Z< be given by T(t)(X) =
et1l%) X where Z; is a unit vector in Z. Then, T(t) is a linear isometry
which preserves Lie algebra.

Proof. Note that £+ = @7_,W;. For any X,Y € Z*, denote X =
Y ko uk and ¥ o= S feq Wk with ug,wg € Wy, Then, using (2.1) and
the fact that j{Zy)? = —6%1d on Wy, we have that

< T(EYX),THYY) >= 3 < ug,wp >=< X, Y >,
k=1
which means that T(t) is an isometry.
Since dimZ = 1 and

< [TEXX), T(NY)], Zo >
= < J(Zo) o T(ANX), T(I)Y) >
=< T(t) 0 j(Zo)X, T(INY) >
=< }(Zy)X,Y >
=< [X,Y], % >,
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we see that T(t) preserves Lie algebra. This completes the proof.

PROPOSITION 3.2. Let N be a simply connected 2-step nilpotent
Lie group with a left invariant metric. Assume that N has 1-dimensional
center. Ify(t) is a geodesic in N such that 4(0) = ¢, then foreacht € R,
there exists an isometry () of N such that y'{t) = dy(}(7'(0)).

Proof. ¥or Zy = 0, let (t) = l () be the left translation by ().
Then, (%) is an isometry of N and by (2.3) and (2.4)

7 (#)

= dly(X'(1)

=dl,(0Xo

=dl,)(7'(0)).
In case of Z; # 0, we may assume that [Z;| = 1. For each t € R, define
T(t) as in Lemma 31 and f(t) : N — AN given by f}X + Z) =
T(t)X)+ Z where Z € Z and X € Z+. Then, by Lemma 3.1, it is
obvious that f(¢) is a linear isometry and Lic algebra automorphism
of . Since N is a simply connected Lie group and f(t) is a Lie alge-
bra automorphism, there exists an automorphism ¢(¢) of N such that
f(#) = dé(t). Since ¢(t)ol, = lyy(ny0¢(t) for any n € N, we have that
(do(t))n o (dln)e = (dly(ey(ny) © (dd(t))e, which implies that ¢(t) is an
isometry of NV since {d¢(1)). = f(t) and left translations are isometries.
Let ¥(t) = I,y © ¢(t). Then, we have that

dyp(8)(+'(0))
=d(ly(0) 0 4(£))(v'(0))
=dly(y 0 dg(t)(+'(0))
=dlyn(X'(t) + Zp)
=7'(t).
This completes the proof.
Recall that the Jacobi operator along (1) is defined by

Ryey(+) == R(-,~'(£))Y' (1)
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COROLLARY 3.3. Let N be a simply connected 2-step nilpotent Lie
group with a left invariant metric. Assume that N has 1-dimensional
center. Then, Jacobi operator along each geodesic on N has constant
eigenvalues,

Proof. Since N has a left invariant metric, it is sufficient to show
the statement about geodesic ¥(#) with ¥(0) = e. By Propositioon 3.2,
there exists an isometry 1(¢) of N such that +'(t) = dy¥(¢)(7'(0))}. Let
{X1, X2, -+ ,X,} be an orthonormal basis of T, N = A/ which consists
of eigenvectors of Jacobi operator R, (g)(-), that is Ry (oy)(X,) = r. X,
foreachz=1,2,--- ,n. Since

< R'y’(t)(d%b(t)(-xt)’ d"!’(t)(XJ)) >
= < Ray(oyyop (d(t)(X.), dp(t)(X})) >
= < Ryo)(X1), X; >
= 18y,

we see that eigenvalues of Ry(y)(+) are r,’s. This completes the proof.

Note from (2.3) that

(3.1) Y(t) = dly i (X'(8) + Zo)
= X'(t)+ Zo

where the last terms are regarded as left invariant vector fields along
¥'(t). From (2.6), we obtain the formula of Jacobi operator of 2-step
nilpotent Lie group (with any dimensional center) as follows.

(3.2)
R’y’(t) (..X + Z)

=Rx/(0+2,(X + Z)

=L, X DY) + 35(2)i(Z0)X' (1) = T Z)F(2)X)
— DX = 31X, 5(Z0)X (0] + HX(8),1(Z0)X]
+ X (0.5(2)X"(0)

forany X ¢ Z1t and Z € Z.
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EXAMPLE 3.4. Let N = Z @ Z+ be a 6-dimensional Lie algebra
with an inner product and orthonormal basis {X;,Xs,X3,X4} and

{Z1,25} of Z1 and Z, respectively. And let N be its unique 2-step
nilmanifold. Define the Lie bracket so that

[‘Yla—x’l] = Zh [.Y],X,l] =Z‘2a ['¥33X4] =2211
[-X-Z!-Yl] = __le [‘Y‘lv-Yll = —Z'Zv [—\—41—\'31 = —2Z11
and others are zero. Then, N Is 2-step nilpotent. Consider the geodesic
4(t) on N with 4{0) = e and iniiial velocity Xy + Z; where Xo =
.Y1 + JY‘Z: Since ](Zl)..Yg = ..YQ,j(Z] ).Yg = —‘Yl and ](Z] )2){0 = “X(],
we have that
X'(t) = eZ) X,
=costXy + sintj(Z1)X,
= {cost — sint)Xy + {cost + sint)X5.
Let ¢ = cost —sint and b = cost +sint Then, duect calculations of

(3.2) lead that the representation matrix with respect to {Zy, Xy, X2, 22
,X3,X4} of Jacobi operator along v(t) is

. a? + b2 —a —b 1 a> 2a =2
- —a 1307 3ab & 7 29 4 0
—b 3ab 1 — 342 —3b 0 4-—3a?

From this, we obtain that its characteristic polynomial is
5 3 1 1 1
2(x + z)(at - Z){:r3 + 5(02 —4)z? - E(i}a“ +4a® - 8)x + Z(? —a?)},

which shows that all eigenvalues are not constant.
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