JACOBI OPERATORS ALONG GEODESICS IN 2-STEP NILMANIFOLDS

Keun Park

1. Introduction

Let \mathcal{N} be a 2 -step nilpotent Lie algebra with an inner product \langle,$\rangle ,$ and N its unique simply connected Lie group with the left invariant metric determined by the inner product \langle,$\rangle on \mathcal{N}$. We call this N a 2 -step nilmanifold. The meaning of \mathcal{N} being 2 -step nilpotent is $[\mathcal{N},[\mathcal{N}, \mathcal{N}]]=0$. The center of \mathcal{N} is denoted by \mathcal{Z}. Then, \mathcal{N} can be expressed as the direct sum of the subspaces \mathcal{Z} and its orthogonal complement \mathcal{Z}^{\perp}.

For Z in \mathcal{Z}, a skew-symmetric linear transformation $\jmath(Z): \mathcal{Z}^{\perp} \rightarrow$ \mathcal{Z}^{\perp} is defined by $j(Z) X=(a d X)^{*} Z$ for $X \in \mathcal{Z}^{\perp}$, or equivalently

$$
\langle\jmath(Z) X, Y\rangle=\langle[X, Y], Z\rangle \quad \text { for } \quad X, Y \in \mathcal{Z}^{\perp}
$$

This transformation was defined by A. Kaplan[K1,K2] to study the geometry of groups of Heisenberg type, those groups for which $j(Z)^{2}=$ $-|Z|^{2} \imath d$ for each $Z \in \mathcal{Z}$.

It is well-known that the Jacobi operator plays a fundamental role in Riemannian geometry. In [BTV], it was showed that the Jacobi operator along each geodesic of groups of Heisenberg type has constant eigenvalues.

In this note, we will show thst if N has 1 -dimensional center, then for any geodesic $\gamma(t)$ in N with $\gamma(0)=e($ identity of N) and any $t \in R$ there exists an isometry $\psi(t)$ of N such that $\gamma^{\prime}(t)=d \psi(t)\left(\gamma^{\prime}(0)\right)$. Using this fact, we will show that the Jacobi operator along each geodesic of 2 -step nilpotent Lie group with a left invariant metric has constant eigenvalues if N has 1-dimensional center. And also, we will give an

[^0]example of 2-step nilpotent Lie group with 2-dimensional center which doesn't have this property.

2. Preliminaries

In this section, we will give some known results about 2 -step nilpotent Lie groups with a left invariant metric. Throughout this section, we denote \mathcal{N} be a 2 -step nilpotent Lie algebra with an inner product \langle,$\rangle , and N$ its unique simply connected Lie group with the left invariant metric induced by the inner product \langle,$\rangle on \mathcal{N}$.

Recall that for $Z_{0} \in \mathcal{Z}$, a skew-symmetric linear transformation $j\left(Z_{0}\right): \mathcal{Z}^{\perp} \rightarrow \mathcal{Z}^{\perp}$ is defined by $\left.\left\langle j\left(Z_{0}\right) \mathrm{X}, Y\right\rangle=\langle\mathrm{X}, Y], Z_{0}\right\rangle$ for $X, Y \in$ \mathcal{Z}^{\perp}. Let $\left\{ \pm \theta_{1} i, \pm \theta_{2} 2, \cdots, \pm \theta_{n} 2\right\}$ be the distinct eigenvalues of $\jmath\left(Z_{0}\right)$ with each $\theta_{k}>0$, and let $\left\{W_{1}, W_{2}, \cdots, W_{n}\right\}$ be the invariant subspaces of $j\left(Z_{0}\right)$ such that $j\left(Z_{0}\right)^{2}=-\theta_{k}^{2} 2 d$ on W_{k} for each $k=1,2, \cdots, n$. Then, \mathcal{Z}^{\perp} can be expressed as a direct sum of W_{h} 's and kernel of $\jmath\left(Z_{0}\right)$, that is $\mathcal{Z}^{\perp}=\operatorname{Ker} \jmath\left(Z_{0}\right) \oplus \oplus_{k=1}^{n} W_{k}$ and $\jmath\left(Z_{0}\right)^{2}=-\theta_{k}^{2} i d$ on each W_{k} leads

$$
\begin{equation*}
e^{t_{3}\left(Z_{0}\right)}=\cos \left(t \theta_{h}\right) \iota d+\frac{\sin \left(t \theta_{h}\right)}{\theta_{k}} j\left(Z_{0}\right) \tag{2.1}
\end{equation*}
$$

on W_{k} for each k. And also, if N has 1-dimensional center and $Z_{0} \neq 0$, then $\operatorname{Kerj}\left(Z_{0}\right)=\{0\}$, so $\mathcal{Z}^{\perp}=\oplus_{k=1}^{n} W_{k}$.

Let $\gamma(t)$ be a curve in N such that $\gamma(0)=\epsilon$ (identity element of N) and $\gamma^{\prime}(0)=X_{0}+Z_{0}$ where $X_{0} \in \mathcal{Z}^{\perp}$ and $Z_{0} \in \mathcal{Z}$. Since $\exp : \mathcal{N} \rightarrow$ N is a diffeomorphism, the curve $\gamma(t)$ can be expressed uniquely by $\gamma(t)=\exp (\mathcal{X}(t)+Z(t))$ with

$$
\begin{array}{rll}
X(t) \in \mathcal{Z}^{\perp}, & X^{\prime}(0)=X_{0}, & X(0)=0 \\
Z(t) \in \mathcal{N}, & Z^{\prime}(0)=Z_{0}, & Z(0)=0
\end{array}
$$

A.Kaplan[K1,K2] showed that the curve $\gamma(t)$ is a geodesic in N if and only if

$$
\begin{array}{r}
X^{\prime \prime}(t)=j\left(Z_{0}\right) X^{-1}(t), \tag{2.2}\\
Z^{\prime}(t)+\frac{1}{2}\left[X^{\prime}(t), X(t)\right] \equiv Z_{0} .
\end{array}
$$

The solution to this equation was obtained by P. Eberlein(See $[E]$), and he obtained the following(See Propositin $3.2[E]$).

$$
\begin{equation*}
\gamma^{\prime}(t)=d l_{\gamma(t)}\left(X^{\prime}(t)+Z_{0}\right) \tag{2.3}
\end{equation*}
$$

where $l_{\gamma(t)}$ is the left translation by $\gamma(t)$, and it is trivial that

$$
\begin{equation*}
X^{-1}(t)=e^{t J\left(Z_{0}\right)} X_{0} \tag{2.4}
\end{equation*}
$$

from Kaplan's equations (2.2).
If X, Y are elements in \mathcal{N} regarded as left invariant vector fields on N, then the real valued map $\langle X, Y\rangle$ on N given by $\langle X, Y\rangle(n)=$ $\langle X(n), Y(n)\rangle$ is constant. So, the formula([H],p.48)

$$
\begin{aligned}
\left\langle\nabla_{. Y} Y, Z\right\rangle= & \frac{1}{2}\{X\langle Y, Z\rangle+\langle X,[Z, Y]\rangle+Y\langle X, Z\rangle \\
& +\langle Y,[Z, X]\rangle-Z\langle Y, X\rangle-\langle Z,[Y, X]\rangle\}
\end{aligned}
$$

for the covariant derivative $\nabla_{X} Y$ of smooth vector fields on a Riemannian manifold can be reduced to

$$
\nabla_{X} Y=\frac{1}{2}\left\{[X, Y]-(a d X)^{*} Y-(a d Y)^{*} X\right\} \quad \text { for } \quad X, Y^{*} \in \mathcal{N} .
$$

From this, it is routine to show that

$$
\begin{align*}
& \nabla_{X} Y=\frac{1}{2}[X, Y] \quad \text { for } \quad X, Y \in \mathcal{Z}^{\perp} \tag{2.5}\\
& \nabla_{X} Z=\nabla_{Z} X=-\frac{1}{2} \jmath(Z) X \quad \text { for } \quad X \in \mathcal{Z}^{\perp}, Z \in \mathcal{Z} \\
& \nabla_{Z} Z^{*}=0 \quad \text { for } \quad Z, Z^{*} \in \mathcal{Z}
\end{align*}
$$

And also, from (2.5), the formulas for the curvature tensor given by

$$
R\left(\xi_{1}, \xi_{2}\right) \xi_{3}=-\nabla_{\left[\xi_{1}, \xi_{2}\right]} \xi_{3}+\nabla_{\xi_{1}}\left(\nabla_{\xi_{2}} \xi_{3}\right)-\nabla_{\xi_{2}}\left(\nabla_{\xi_{1}} \xi_{3}\right)
$$

can be obtained as follows(See [E]).

$$
\begin{align*}
& R(X, Y) X^{*}=\frac{1}{2} j([X, Y]) X^{*}-\frac{1}{4} j\left(\left[Y, X^{*}\right]\right) X+\frac{1}{4} j\left(\left[X, X^{*}\right]\right) Y \tag{2.6}\\
& \quad \text { for } X, Y, X^{*} \in Z^{\perp}, \\
& R(X, Y) Z=-\frac{1}{4}[X, j(Z) Y]+\frac{1}{4}[Y, j(Z) X] \\
& R(X, Z) Y=-\frac{1}{4}[X, j(Z) Y] \text { for } \quad X, Y \in \mathcal{Z}^{\perp} \text { and } \quad Z \in Z, \\
& R\left(Z, Z^{*}\right) X=-\frac{1}{4} j\left(Z^{*}\right) j(Z) X+\frac{1}{4} j(Z) j\left(Z^{*}\right) X \\
& R(X, Z) Z^{*}=-\frac{1}{4} j(Z) j\left(Z^{*}\right) X \text { for } X \in \mathcal{Z}^{\perp} \text { and } Z, Z^{*} \leq Z \\
& R\left(Z_{1}, Z_{2}\right) Z_{3}=0 \text { for } Z_{1}, Z_{2}, Z_{3} \in \mathcal{Z} .
\end{align*}
$$

3. Main Results

Lemma 3.1. Let N be a simply connected 2-step nilpoict.: Lie group with a left invariant metric. Assume that N has 1 -dimensional center. For each $t \in R$, let $T(t): \mathcal{Z}^{\perp} \rightarrow \mathcal{Z}^{\perp}$ be given by $T(t)(X)=$ $e^{t \jmath\left(Z_{0}\right)} \times X$ where Z_{0} is a unit vector in \mathcal{Z}. Then, $T(t)$ is a linear isometry which preserves Lie algebra.

Proof. Note that $\mathcal{Z}^{\perp}=\oplus_{k=1}^{n} W_{k}$. For any $X, Y \in \mathcal{Z}^{\perp}$, denote $X=$ $\sum_{k=1}^{n} u_{k}$ and $Y=\sum_{k=1}^{n} w_{k}$ with $u_{k}, w_{k} \in W_{k}$. Then, using (2.1) and the fact that $j\left(Z_{0}\right)^{2}=-\theta_{k}^{2} \imath d$ on W_{k}, we have that

$$
<T(t)(X), T(t)(Y)\rangle=\sum_{k=1}^{n}\left\langle u_{k}, w_{k}\right\rangle=\langle X, Y\rangle
$$

which means that $T(t)$ is an isometry.
Since $\operatorname{drm\mathcal {Z}}=1$ and

$$
\begin{aligned}
& \left\langle[T(t)(X), T(t)(Y)], Z_{0}\right\rangle \\
= & \left\langle j\left(Z_{0}\right) \circ T(t)(X), T(t)(Y)\right\rangle \\
= & \left\langle T(t) \circ j\left(Z_{0}\right) X, T(t)(Y)\right\rangle \\
= & \left.<j\left(Z_{0}\right) X, Y\right\rangle \\
= & \left\langle[X, Y], Z_{0}\right\rangle,
\end{aligned}
$$

we see that $T(t)$ preserves Lie algebra. This completes the proof.
Proposition 3.2. Let N be a simply connected 2-step nilpotent Lie group with a left invariant metric. Assume that N has 1-dimensional center. If $\gamma(t)$ is a geodesic in N such that $\gamma(0)=e$, then for each $t \in R$, there exists an isometry $\psi(t)$ of N such that $\gamma^{\prime}(t)=d \psi(t)\left(\gamma^{\prime}(0)\right)$.

Proof. For $Z_{0}=0$, let $\psi(t)=l_{\gamma(t)}$ be the left translation by $\gamma(t)$. Then, $\psi(t)$ is an isometry of N and by (2.3) and (2.4)

$$
\begin{aligned}
& \gamma^{\prime}(t) \\
= & d l_{\gamma(t)}\left(X^{\prime}(t)\right) \\
= & d l_{\gamma(t)} X_{0} \\
= & d l_{\gamma(t)}\left(\gamma^{\prime}(0)\right) .
\end{aligned}
$$

In case of $Z_{0} \neq 0$, we may assume that $\left|Z_{0}\right|=1$. For each $t \in R$, define $T(t)$ as in Lemma 31 and $f(t): \mathcal{N} \rightarrow \mathcal{N}$ given by $f(t)(X+Z)=$ $T(t)\left(X^{\prime}\right)+Z$ where $Z \in \mathcal{Z}$ and $X \in \mathcal{Z}^{\perp}$. Then, by Lemma 3.1 , it is obvious that $f(t)$ is a linear isometry and Lie algebra automorphism of \mathcal{N}. Since N is a simply connected Lie group and $f(t)$ is a Lie algebra automorphism, there exists an automorphism $\phi(t)$ of N such that $f(t)=d \phi(t)$. Since $\phi(t) \circ l_{n}=l_{\phi(t)(n)} \circ \phi(t)$ for any $n \in N$, we have that $(d \phi(t))_{n} \circ\left(d l_{n}\right)_{e}=\left(d l_{\phi(t)(n)}\right) \circ(d \phi(t))_{e}$, which implies that $\phi(t)$ is an isometry of N since $(d \phi(t))_{e}=f(t)$ and left translations are isometries. Let $v(t)=l_{\gamma(t)} \circ \phi(t)$. Then, we have that

$$
\begin{aligned}
& d \psi(t)\left(\gamma^{\prime}(0)\right) \\
= & d\left(l_{\gamma(t)} \circ \phi(t)\right)\left(\gamma^{\prime}(0)\right) \\
= & d l_{\gamma(t)} \circ d \phi(t)\left(\gamma^{\prime}(0)\right) \\
= & d l_{\gamma(t)}\left(X^{\prime}(t)+Z_{0}\right) \\
= & \gamma^{\prime}(t) .
\end{aligned}
$$

This completes the proof.
Recall that the Jacobi operator along $\gamma(t)$ is defined by

$$
R_{\gamma^{\prime}(t)}(\cdot):=R\left(\cdot, \gamma^{\prime}(t)\right) \gamma^{\prime}(t)
$$

Corollary 3.3. Let N be a simply connected 2-step nilpotent Lie group with a left invariant metric. Assume that N has 1 -dimensional center. Then, Jacobi operator along each geodesic on N has constant eigenvalues.

Proof. Since N has a left invariant metric, it is sufficient to show the statement about geodesic $\gamma(t)$ with $\gamma(0)=e$. By Propositioon 3.2, there exists an isometry $\psi(t)$ of N such that $\gamma^{\prime}(t)=d \psi(t)\left(\gamma^{\prime}(0)\right)$. Let $\left\{X_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$ be an orthonormal basis of $T_{e} N=\mathcal{N}$ which consists of eigenvectors of Jacobi operator $R_{\gamma^{\prime}(0)}(\cdot)$, that is $R_{\gamma^{\prime}(0)}\left(X_{2}\right)=r_{t} X_{t}$ for each $i=1,2, \cdots, n$. Since

$$
\begin{aligned}
& <R_{\gamma^{\prime}(t)}\left(d \psi(t)\left(X_{i}\right), d \psi(t)\left(X_{j}\right)\right)>^{-} \\
= & <R_{d \psi(t)\left(\gamma^{\prime}(0)\right)}\left(d \psi(t)\left(X_{i}\right), d \psi(t)\left(X_{j}\right)\right)> \\
= & <R_{\gamma^{\prime}(0)}\left(X_{i}\right), X_{3}> \\
= & r_{i} \delta_{z j},
\end{aligned}
$$

we see that eigenvalues of $R_{\gamma^{\prime}(t)}(\cdot)$ are r_{2} 's. This completes the proof.
Note from (2.3) that

$$
\begin{align*}
\gamma^{\prime}(t) & =d l_{\gamma(t)}\left(X^{\prime}(t)+Z_{0}\right) \tag{3.1}\\
& =X^{\prime}(t)+Z_{0}
\end{align*}
$$

where the last terms are regarded as left invariant vector fields along $\gamma^{\prime}(t)$. From (2.6), we obtain the formula of Jacobi operator of 2-step nilpotent Lie group (with any dimensional center) as follows.

$$
\begin{align*}
& R_{\gamma^{\prime}(t)}(X+Z) \tag{3.2}\\
= & R_{X^{\prime}(t)+Z_{0}}(X+Z) \\
= & \frac{3}{4} j\left(\left[X, X^{\prime}(t)\right]\right) X^{\prime}(t)+\frac{1}{2} j(Z) j\left(Z_{0}\right) X^{\prime}(t)-\frac{1}{4} \jmath\left(Z_{0}\right) j(Z) X^{\prime}(t) \\
& -\frac{1}{4} \jmath\left(Z_{0}\right)^{2} X-\frac{1}{2}\left[X, j\left(Z_{0}\right) X^{\prime}(t)\right]+\frac{1}{4}\left[X^{-1}(t), \jmath\left(Z_{0}\right) X\right] \\
& +\frac{1}{4}\left[X^{\prime}(t), j(Z) X^{\prime}(t)\right]
\end{align*}
$$

for any $X \in \mathcal{Z}^{\perp}$ and $Z \in \mathcal{Z}$.

Example 3.4. Let $\mathcal{N}=\mathcal{Z} \oplus \mathcal{Z}^{\perp}$ be a 6 -dmensional Lie algebra with an inner product and orthonormal basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ and $\left\{Z_{1}, Z_{2}\right\}$ of \mathcal{Z}^{\perp} and \mathcal{Z}, respectively. And let N be its unique 2-step nilmanifold. Define the Lie bracket so that

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right]=Z_{1}, \quad\left[X_{1}, X_{4}\right]=Z_{2}, \quad\left[X_{3}, X_{4}\right]=2 Z_{1},} \\
& {\left[X_{2}, X_{1}\right]=-Z_{1}, \quad\left[X_{4}, X_{1}\right]=-Z_{2}, \quad\left[X_{4}, X_{3}\right]=-2 Z_{1},}
\end{aligned}
$$

and others are zero. Then, \mathcal{N} is 2 -step nilpotent. Consider the geodesic $\gamma(t)$ on N with $\gamma(0)=e$ and initial velocity $X_{0}+Z_{1}$ where $X_{0}=$ $X_{1}+X_{2}$. Since $\jmath\left(Z_{1}\right) X_{1}=X_{2}, j\left(Z_{1}\right) X_{2}=-X_{1}$ and $\jmath\left(Z_{1}\right)^{2} X_{0}=-X_{0}$, we have that

$$
\begin{aligned}
\mathrm{X}^{-1}(t) & =e^{t_{3}\left(Z_{1}\right)} X_{0} \\
& =\cos t X_{0}+\sin t_{J}\left(Z_{1}\right) X_{0} \\
& =(\cos t-\sin t) X_{1}+(\cos t+\sin t) X_{2}
\end{aligned}
$$

Let $a=\cos t-\sin t$ and $b=\cos t+\sin t$ Then, dnect calculations of (3.2) lead that the representation matrix with respect to $\left\{Z_{1}, X_{1}, X_{2}, Z_{2}\right.$ $\left., \lambda_{3}, \bar{X}_{4}\right\}$ of Jacobi operator along $\gamma(t)$ is

$$
\frac{1}{4}\left(\begin{array}{ccc}
a^{2}+b^{2} & -a & -b \\
-a & 1-3 b^{2} & 3 a b \\
-b & 3 a b & 1-3 a^{2}
\end{array}\right) \oplus \frac{1}{4}\left(\begin{array}{ccc}
a^{2} & 2 a & -2 b \\
2 a & 4 & 0 \\
-2 b & 0 & 4-3 a^{2}
\end{array}\right) .
$$

From this, we obtain that its characteristic polynomial is
$x\left(x+\frac{5}{4}\right)\left(x-\frac{3}{4}\right)\left\{x^{3}+\frac{1}{2}\left(a^{2}-4\right) x^{2}-\frac{1}{16}\left(3 a^{4}+4 a^{2}-8\right) x+\frac{1}{4}\left(2-a^{2}\right)\right\}$,
which shows that all eigenvalues are not constant.

References

[BTV] J Berndt, F Tricern and L Vanhecke, Geometry of generalized Heasenberg groups and their Damek-Ricci hammonic extenstons, C. R. Acad Sci. Paris 318 (1994), 471-476
[E] P.Eberlem, Geometry of 2-step Nalpotent Lie groups with a left anvariant metrac, Amn Scient Ecole Normale Sup. 27 (1994), 611-660
[H] S.Helgason, Differentzal geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[K1] A.Kaplan, Remannzan nulmanıfolds attached to Chfford modules, Geom. Dedicata 11 (1981), 127-136
[K2] ___ On the geometry of the groups of Hetsenberg type, Bull London Math Soc 15 (1983), 35-42

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

[^0]: Received October 2,1996.
 Supported in part by the Basic Sciences Research Instıtute of the University of Ulsan .

