• Title/Summary/Keyword: generalized recurrent manifold

Search Result 18, Processing Time 0.017 seconds

ON GENERALIZED W3 RECURRENT RIEMANNIAN MANIFOLDS

  • Mohabbat Ali;Quddus Khan;Aziz Ullah Khan;Mohd Vasiulla
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.325-339
    • /
    • 2023
  • The object of the present work is to study a generalized W3 recurrent manifold. We obtain a necessary and sufficient condition for the scalar curvature to be constant in such a manifold. Also, sufficient condition for generalized W3 recurrent manifold to be special quasi-Einstein manifold are given. Ricci symmetric and decomposable generalized W3 recurrent manifold are studied. Finally, the existence of such a manifold is ensured by a non-trivial example.

ON A CLASS OF GENERALIZED RECURRENT (k, 𝜇)-CONTACT METRIC MANIFOLDS

  • Khatri, Mohan;Singh, Jay Prakash
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1283-1297
    • /
    • 2020
  • The goal of this paper is the introduction of hyper generalized 𝜙-recurrent (k, 𝜇)-contact metric manifolds and of quasi generalized 𝜙-recurrent (k, 𝜇)-contact metric manifolds, and the investigation of their properties. Their existence is guaranteed by examples.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.

ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO SEMI-SYMMETRIC METRIC CONNECTION

  • Pahan, Sampa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.235-251
    • /
    • 2021
  • The aim of the present paper is to study 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection. Firstly, we prove that extended generalized M-projective 𝜙-recurrent 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection is an 𝜂-Einstein manifold with respect to Levi-Civita connection under some certain conditions. Later we study some curvature properties of 3-dimensional trans-Sasakian manifold admitting the above connection.

CERTAIN STUDY OF GENERALIZED B CURVATURE TENSOR WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD

  • Rahuthanahalli Thimmegowda Naveen Kumar;Basavaraju Phalaksha Murthy;Puttasiddappa Somashekhara;Venkatesha Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.893-900
    • /
    • 2023
  • In the present study, we consider some curvature properties of generalized B-curvature tensor on Kenmotsu manifold. Here first we describe certain vanishing properties of generalized B curvature tensor on Kenmostu manifold. Later we formulate generalized B pseudo-symmetric condition on Kenmotsu manifold. Moreover, we also characterize generalized B ϕ-recurrent Kenmotsu manifold.

ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS

  • Kim, Jeong-Sik;Prasad, Rajendra;Tripathi, Mukut-Mani
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.953-961
    • /
    • 2002
  • Generalized Ricci-recurrent trans-Sasakian manifolds are studied. Among others, it is proved that a generalized Ricci-recurrent cosymplectic manifold is always recurrent Generalized Ricci-recurrent trans-Sasakian manifolds of dimension $\geq$ 5 are locally classified. It is also proved that if M is one of Sasakian, $\alpha$-Sasakian, Kenmotsu or $\beta$-Kenmotsu manifolds, which is gener-alized Ricci-recurrent with cyclic Ricci tensor and non-zero A (ξ) everywhere; then M is an Einstein manifold.

SOME RECURRENT PROPERTIES OF LP-SASAKIAN NANIFOLDS

  • Venkatesha, Venkatesha;Somashekhara., P.
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.793-801
    • /
    • 2019
  • The aim of the present paper is to study certain recurrent properties of LP-Sasakian manifolds. Here we first describe Ricci ${\eta}$-recurrent LP-Sasakian manifolds. Further we study semi-generalized recurrent and three dimensional locally generalized concircularly ${\phi}$-recurrent LP-Sasakian manifolds and got interesting results.