Browse > Article
http://dx.doi.org/10.5666/KMJ.2018.58.2.347

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection  

Hui, Shyamal Kumar (Department of Mathematics, The University of Burdwan)
Lemence, Richard Santiago (Institute of Mathematics, College of Science, University of the Philippines)
Publication Information
Kyungpook Mathematical Journal / v.58, no.2, 2018 , pp. 347-359 More about this Journal
Abstract
A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.
Keywords
generalized ${\phi}-recurrent$; generalized ${\phi}-recurrent$; Kenmotsu manifold; ${\eta}-Einstein$ manifold; quarter-symmetric metric connection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
2 I. E. Hirica and L. Nicolescu, On quarter symmetric metric connections on pseudo Riemannian manifolds, Balkan J. Geom. Appl., 16(2011), 56-65.
3 S. K. Hui, On $\phi$-pseudo symmetric Kenmotsu manifolds, Novi Sad J. Math., 43(1)(2013), 89-98.
4 S. K. Hui, On $\phi$-pseudo symmetric Kenmotsu manifolds with respect to quarter symmetric metric connection, Appl. Sci., 15(2013), 71-84.
5 Kalpana and P. Srivastava, Some curvature properties of a quarter symmetric metric connection in an SP-Sasakian manifold, Int. Math. Forum, 5(50)(2010), 2477-2484.
6 K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103.   DOI
7 K. T. Pradeep Kumar, C. S. Bagewadi and Venkatesha, Projective $\phi$-symmetric K- contact manifold admitting quarter symmetric metric connection, Diff. Geom. Dyn. Syst., 13(2011), 128-137.
8 K. T. Pradeep Kumar, Venkatesha and C. S. Bagewadi, On $\phi$-recurrent Para-Sasakian manifold admitting quarter symmetric metric connection, ISRN Geometry 2012, Article ID 317253, 10 pp.
9 A. K. Mondal and U. C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Anal. Appl., 1(3)(2009), 99-108.
10 S. Mukhopadhyay, A. K. Roy and B. Barua, Some properties of a quarter symmetric metric connection on a Riemannian manifold, Soochow J. Math., 17(1991), 205-211.
11 A. Prakash, On concircularly $\phi$-recurrent Kenmotsu Manifolds, Bull. Math. Anal. Appl., 27(1952), 287-295.
12 J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32(1985), 187-193.
13 C. Ozgur, On generalized recurrent Kenmotsu manifolds, World Appl. Sci. J., 2(1)(2007), 29-33.
14 E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc., 27(1952), 287-295.
15 D. G. Prakasha, On $\phi$-symmetric Kenmotsu manifolds with respect to quarter symmetric metric connection, Int. Electronic J. Geom., 4(1)(2011), 88-96.
16 N. Pusic, On quarter symmetric metric connections on a hyperbolic Kaehlerian space, Publ. Inst. Math. (Beograd), 73(87)(2003), 73-80.   DOI
17 N. Pusic, Some quarter symmetric connections on Kaehlerian manifolds, Facta Univ. Ser. Mech. Automat. Control Robot., 4(17)(2005), 301-309.
18 S. C. Rastogi, On quarter symmetric metric connection, C. R. Acad. Bulgare Sci., 31(1978), 811-814.
19 S. C. Rastogi, On quarter symmetric metric connections, Tensor (N.S.), 44(1987), 133-141.
20 A. A. Shaikh and S. K. Hui, On locally $\phi$-symmetric ${\beta}$-Kenmotsu manifolds, Extracta Math., 24(3)(2009), 301-316.
21 D. Tarafder, On pseudo concircular symmetric manifold admitting a type of quarter symmetric metric connection, Istanbul Univ. Fen Fak. Mat. Derg., 55-56(1996-1997), 35-41.
22 A. A. Shaikh and S. K. Jana, Quarter-symmetric metric connection on a (k, ${\mu}$)-contact metric manifold, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 55(2006), 33-45.
23 S. S. Shukla and M. K. Shukla, On $\phi$-Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math., 39(2)(2009), 89-95.
24 Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X; Y ) ${\cdot}$ R = 0, I. The local version, J. Differential Geom., 17(1982), 531-582.   DOI
25 T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J., 29(1977), 91-113.   DOI
26 S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21(1969), 21-38.   DOI
27 M. Tarafder, J. Sengupta and S. Chakraborty, On semi pseudo symmetric manifolds admitting a type of quarter symmetric metric connection, Int. J. Contemp. Math. Sci., 6(2011), 169-175.
28 A. G. Walker, On Ruses spaces of recurrent curvature, Proc. London Math. Soc., 52(1950), 36-64.
29 K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15(9)(1970), 1579-1586.
30 K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor (N.S.), 38(1982), 13-18.
31 S. C. Biswas and U. C. De, Quarter symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 46(1997), 49-56.
32 M. Ahmad, CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection, Bull. Korean Math. Soc., 49(2012), 25-32.   DOI
33 B. S. Anitha and C. S. Bagewadi, Invariant submanifolds of Sasakian manifolds admitting quarter symmetric metric connection - II, Ilirias J. Math., 1(1)(2012), 1-13.
34 C. S. Bagewadi, D. G. Prakasha and Venkatesha, A study of Ricci quarter-symmetric metric connection on a Riemannin manifold, Indian J. Math., 50(3)(2008), 607-615.
35 A. Bajpai and R. Nivas, On submanifolds of codimention immersed in a manifold with quarter symmetric semi-metric connection, VSRD-TNTJ, 2(9)(2011), 424-431.
36 A. Basari and C. Murathan, on generalized $\phi$-recurrent Kenmotsu manifolds, Fen Derg., 3(1)(2008), 91-97.
37 U. C. De, On $\phi$-symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(1)(2008), 33-38.
38 D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
39 E. Cartan, Sur une classe remarquable d'espaces de Riemannian, Bull. Soc. Math. France, 54(1926), 214-264.
40 M. C. Chaki, On pseudosymmetric manifolds, An. St. Univ. "Al. I. Cuza" Iasi, 33(1987), 53-58.
41 U. C. De, N. Guha and D. Kamilya, on generalized Ricci-recurrent manifolds, Tensor (N.S.), 56(1995), 312-317.
42 U. C. De, A. A. Shaikh and S. Biswas, On $\Phi$-recurrent Sasakian manifolds, Novi Sad J. Math., 33(2003), 43-48.
43 U. C. De, A. Yildiz and A. F. Yaliniz, On $\phi$$\phi$-recurrent Kenmotsu manifolds, Turkish J. Math., 33(2009), 17-25.
44 R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44(1)(1992), 1-34.
45 S. Golab, On semisymmetric and quarter symmetric linear connections, Tensor (N.S.), 29(1975), 249-254.
46 R. Deszcz, On Ricci-pseudo-symmetric warped products, Demonstratio Math., 22(1989), 1053-1065.
47 R. S. D. Dubey, Generalized recurrent spaces, Indian J Pure Appl. Math., 10(2)(1979), 1508-1513.
48 A. Friedmann and J. A. Schouten, Uber die Geometric der halbsymmetrischen Ubertragung, Math. Zeitschr, 21(1924), 211-223.   DOI