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Abstract. In the present study, we consider some curvature properties

of generalized B-curvature tensor on Kenmotsu manifold. Here first we

describe certain vanishing properties of generalized B curvature tensor on
Kenmostu manifold. Later we formulate generalized B pseudo-symmetric

condition on Kenmotsu manifold. Moreover, we also characterize gener-

alized B ϕ-recurrent Kenmotsu manifold.

1. Introduction

In [7], authors Shaikh and Kundu proved the equivalency of various geomet-
ric structures obtained by the same curvature restriction on different curvature
tensors. For this purpose they have introduced a special type of (0,4) tensor
field, called B curvature tensor and further they studied generalized B curva-
ture tensor on a Riemannian manifold and is given by

B(U, V )X = a0R(U, V )X + a1[S(V,X)U − S(U,X)V(1)

+ g(V,X)QU − g(U,X)QV ]

+ 2a2r[g(V,X)U − g(U,X)V ],

where a0, a1 and a2 are scalars.
The generalized B curvature tensor includes the structures of quasi-confor-

mal, Weyl conformal, conharmonic and concircular curvature tensors:

(i) The quasi-conformal curvature tensor C∗ [10] if a0 = a, a1 = b and
a2 = −1

n [ a
n−1 + 2b].

(ii) The weyl-conformal curvature tensor C̃ [9] if a0 = 1, a1 = −1
n−2 and

a2 = −1
2(n−1)(n−2) .
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(iii) The concircular curvature tensor C [8] if a0 = 1, a1 = 0 and a2 =
−1

2n(n−1) .

(iv) The conharmonic curvature tensor P [3] if a0 = 1, a1 = −1
n−2 and

a2 = 0.

On the other hand, the structure of Kenmotsu manifold was first devel-
oped and studied by Kenmotsu [5] and he proved that a Kenmotsu manifold
admitting R(X,Y ) · R = 0 is a space of negative curvature −1. In [4], au-
thors studied some symmetric properties of Kenmotsu manifold. Later Amit
Prakash [6] studied concircularly ϕ-recurrent conditions of Kenmotsu mani-
fold. Recently Ajit Barman and De [1] have formulated Kenmotsu manifold
admitting m-projective curvature tensor with different metric connection.

The present paper is structured in the following way: In Section 2, we for-
mulate the preliminaries and fundamental results of Kenmotsu manifold which
is needed throughout this study. In Section 3 we shall describe some vanishing
conditions of generalized B curvature tensor on Kenmotsu manifold. In par-
ticular we consider generalized B flat, generalized ξ − B flat and generalized
ϕ−B flat Kenmotsu manifold and we found that the manifold reduces to Ein-
stein, space of constant scalar curvature and η-Einstein, respectively. Next we
consider generalized B pseudo-symmetric Kenmotsu manifolds, here we proved
that the manifold becomes η-Einstein and generalized B pseudo-symmetric
Kenmotsu manifold is never reduces to generalized B semi-symmetric mani-
fold. Finally we have determined that if a scalar curvature of generalized B
ϕ-recurrent Kenmotsu manifold is constant then the manifold turns into gen-
eralized B ϕ-symmetric.

2. Some preliminaries on Kenmotsu manifold

A differentiable manifold is expressed as an almost contact metric manifold
[2] if it carries a (1, 1)-tensor field ϕ, a vector field ξ, a global 1-form η and a
Riemanian metric g such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η · ϕ = 0,(2)

g(ϕU, V ) = −g(U, ϕV ), η(V ) = g(V, ξ),(3)

g(ϕU, ϕX) = g(U,X)− η(U)η(X).(4)

An almost contact metric manifold M(ϕ, ξ, η, g) becomes a Kenmotsu manifold
if the following relations hold [5]:

∇V ξ = V − η(V )ξ,(5)

(∇Uϕ)(V ) = g(ϕU, V )ξ − η(V )ϕU,(6)

where ∇ denotes the operator of covariant differentiation with respect to Rie-
mannian metric g.

In a Kenmotsu manifold, the following equations hold [5]:

(∇Uη)(V ) = g(U, V )− η(U)η(V ),(7)
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R(U, V )X = g(U,X)V − g(V,X)U,(8)

R(U, V )ξ = η(U)V − η(V )U,(9)

S(U, ξ) = −(n− 1)η(U),(10)

S(ξ, ξ) = −(n− 1), Qξ = −(n− 1)ξ,(11)

S(ϕU, ϕV ) = S(U, V ) + (n− 1)η(U)η(V )(12)

for any vector fields U , V , X on M and R is the Riemannian curvature tensor
and S is the Ricci tensor of type (0, 2) such that g(QU, V ) = S(U, V ).

3. Kenmotsu manifold admitting some vanishing properties of
generalized B curvature tensor

In this section we have studied some vanishing properties of generalized B
curvature tensor with in the framework of Kenmotsu manifold.

3.1. Kenmotsu manifold admitting B(U, V )X = 0

Here first we are consider a Kenmotsu manifold conceding with B(U, V )X =
0 for any vector fields U , V and X.

Now it follows from (1) that

a0R(U, V )X + a1[S(V,X)U − S(U,X)V + g(V,X)QU − g(U,X)QV ](13)

+ 2a2r[g(V,X)U − g(U,X)V ] = 0.

Now taking an account of (13) we have

a0g(R(U, V )X,W ) + a1[S(V,X)g(U,W )− S(U,X)g(V,W )(14)

+ g(V,X)S(U,W )− g(U,X)S(V,W )]

+ 2a2r[g(V,X)g(U,W )− g(U,X)g(V,W )] = 0.

On contracting above expression over U and W , we have

S(V,X) = −r[a1 + 2a2(n− 1)]

a0 + a1(n− 2)
g(V,X).(15)

This leads us to the following conclusion:

Theorem 3.1. An n-dimensional Kenmotsu manifold conceding with B(U, V )
X = 0 is a Einstein manifold provided that the scalars a0 and a1 are not linearly
dependent to each other.

Again contracting (13), we have

a0 + a12(n− 1) + a22n(n− 1) = 0.

From which it concludes the following corollary:

Corollary 3.2. In an n-dimensional Kenmotsu manifold with B(U, V )X = 0,
the generalized B curvature tensor is reduces to concircular curvature tensor[
a0 = 1, a1 = 0 and a2 = −1

2n(n−1)

]
.
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3.2. Kenmotsu manifold admitting B(U, V )ξ = 0

Next we have studied Kenmotsu manifolds endowed with B(U, V )ξ = 0. It
follows from the expression (1) that

a0R(U, V )ξ + a1[S(V, ξ)U − S(U, ξ)V + g(V, ξ)QU − g(U, ξ)QV ](16)

+ 2a2r[g(V, ξ)U − g(U, ξ)V ] = 0.

By virtue of (9) and (10) in (16), one can obtained that

a0[η(U)g(V,W )− η(V )g(U,W )] + a1[−(n− 1)η(V )g(U,W )(17)

+ (n− 1)η(U)g(V,W ) + η(V )S(U,W )− η(U)S(V,W )]

+ 2a2r[η(V )g(U,W )− η(U)g(V,W )] = 0.

On contracting above equation, we have

η(V )[a0(1− n) + a1(r − (n− 1)(n− 2)) + 2a2r(n− 1)] = 0.(18)

Since η(V ) ̸= 0, we have found that

r =
(n− 1)[a0 + a1(n− 2)]

a1 + 2a2(n− 1)
.(19)

Hence we can state the following result:

Theorem 3.3. If a Kenmotsu manifold admitting B(U, V )ξ = 0 is of con-
stant scalar curvature on condition, then the scalars a1 and a2 are not linearly
dependent to each other.

3.3. Kenmotsu manifold admitting g(B(ϕU, ϕV )ϕX,ϕW ) = 0

Finally we characterize a Kenmotsu manifold providing with g(B(ϕU, ϕV )ϕX,
ϕW ) = 0 and by taking an account of (1), we get

a0g(R(ϕU, ϕV )ϕX, ϕW ) + a1[S(ϕV, ϕX)g(ϕU, ϕW )(20)

− S(ϕU, ϕX)g(ϕV, ϕW ) + g(ϕV, ϕX)S(ϕU, ϕW )

− g(ϕU, ϕX)S(ϕV, ϕW )] + 2a2r[g(ϕV, ϕX)g(ϕU, ϕW )

− g(ϕU, ϕX)g(ϕV, ϕW )] = 0.

On contracting foregoing equation over U and W , we obtain

S(ϕV, ϕX) =
a1(n− 1− r)− 2a2r(n− 2)

a0 + a1(n− 3)
g(ϕV, ϕX).(21)

By considering (4) and (12) in (21), it gives

S(V,X) = Ag(V,X) +Bη(V )η(X),(22)

where

A =
a1(n− 1− r)− 2a2r(n− 2)

a0 + a1(n− 3)
,

B =
−a0(n− 1)− a1((n− 1)(n− 2)− r) + 2a2r(n− 2)

a0 + a1(n− 3)
.
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Thus we can state the following result:

Theorem 3.4. An n-dimensional Kenmotsu manifold with g(B(ϕU, ϕV )ϕX,
ϕW ) = 0 is a Einstein manifold provided that the scalars a0 and a1 are not
linearly dependent to each other.

Replacing V by ϕV and X by ϕX in (22), we obtain

(∇Y S)(ϕV, ϕX) = − (a1 + 2a2(n− 2))dr(Y )

a0 + a1(n− 3)
g(ϕV, ϕX).(23)

If we consider a Kenmotsu manifold with constant scalar curvature r, then
above equation becomes

(∇Y S)(ϕV, ϕX) = 0.(24)

Hence we can able to state the following corollary:

Corollary 3.5. A Kenmotsu manifold satisfies g(B(ϕU, ϕV )ϕX, ϕW ) = 0 with
constant scalar curvature admits an η-parallel Ricci tensor.

4. Generalized B pseudo-symmetric Kenmotsu manifold

Let us consider a generalized B pseudo-symmetric Kenmotsu manifold, i.e.,

(R(U, V ) ·B)(X,Y )W = LB [((U ∧ V ) ·B)(X,Y )W ],(25)

holds on UB = {x ∈ M : B ̸= 0} at x, where LB is some function on UB .
One can be easily seen that from (25) that

(R(U, ξ) ·B)(X,Y )W = LB [((U ∧ ξ)(B(X,Y )W ))(26)

−B((U ∧ ξ)X,Y )W −B(X, (U ∧ ξ))W

−B(X,Y )(U ∧ ξ)W ].

We can easily obtained from left hand side of (26) that

[η(B(X,Y )W )U − g(U,B(X,Y )W )ξ − η(X)B(U, Y )W(27)

+ g(U,X)B(ξ, Y )W − η(W )B(X,Y )U + g(U,W )B(X,Y )ξ

− η(Y )B(X,U)W + g(U, Y )B(X, ξ)W ].

Similarly right hand side of (26) gives

LB [η(B(X,Y )W )U − g(U,B(X,Y )W )ξ − η(X)B(U, Y )W(28)

+ g(U,X)B(ξ, Y )W − η(W )B(X,Y )U + g(U,W )B(X,Y )ξ

− η(Y )B(X,U)W + g(U, Y )B(X, ξ)W ].

Now the foregoing equation can takes the form

(LB − 1)[η(B(X,Y )W )U − g(U,B(X,Y )W )ξ − η(X)B(U, Y )W(29)

+ g(U,X)B(ξ, Y )W − η(W )B(X,Y )U + g(U,W )B(X,Y )ξ

− η(Y )B(X,U)W + g(U, Y )B(X, ξ)W ] = 0.
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Plugging Y = ξ in (29) and then by virtue of (1), we obtain either LB = 1 or

B(X,U)W = (a0 − 2a2r)[g(X,W )U − g(U,W )X](30)

− a1[g(U,W )η(X)ξ − S(U,W )η(X)ξ

− S(X,U)η(W )ξ − ng(U,W )η(X)ξ

+ 2(n− 1)g(U,W )X − g(X,W )U + S(X,W )U ].

Contraction of equation (30) with respect to X brings into view

S(U,W ) = lg(U,W ) + η(U)η(W ),(31)

where l = − [a0(n−1)+a1(r+n(2n−3))]
a0+a1(n−4) and m = − a1(n−1)

a0+a1(n−4) .

Hence we state the following result:

Theorem 4.1. In a generalized B pseudo-symmetric Kenmotsu manifold, ei-
ther LB = 1 or the manifold reduces to η-Einstein provided scalars a0 and a1
are not linearly dependent to each other.

Due to Theorem 4.1, we found LB = 1, then by view of (25), we get

(R(U, V ) ·B)(X,Y )W ̸= 0.

Thus, we obtain the following conclusion:

Corollary 4.2. A generalized B pseudo-symmetric Kenmotsu manifold is
never reduces to generalized B semi-symmetric manifold.

5. Generalized B ϕ-recurrent Kenmotsu manifold

Definition. A Kenmotsu manifold is called a generalized B ϕ-recurrent man-
ifold, if for every non-zero one form A satisfies

ϕ2((∇WB)(U, V )X) = A(W )B(U, V )X(32)

for any vector fields U, V,X,W ∈ TpM .

Now in view of (2) in (32), becomes

−(∇WB)(U, V )X + η((∇WB)(U, V )X)ξ = A(W )B(U, V )X,(33)

from which it follows that

− g((∇WB)(U, V )X,Y ) + η((∇WB)(U, V )X)η(Y )(34)

= A(W )g(B(U, V )X,Y ).

Taking an account of (1) in the above equation and then contracting over U
and Y turns into

− a1(n− 1)(∇WS)(V,X)− [a1 + a2(n− 1)]drW(35)

+ a1[(∇WS)(X, ξ)η(V )− (∇WS)(V, ξ)η(X)]

+ 2a2drW [g(V,X)− η(V )η(X)]

= A(W ){(a0 + a1(n− 2))S(V,X) + (a1 + 2a2(n− 1))rg(V,X)}.
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On plugging V = X = ξ in (35), gives

A(W ) =
[a1 + 2a2(n− 1)]drW

a0(n− 1) + a1[(n− 2)(n− 1)− r]− 2a2r(n− 1)
.(36)

This leads us to the following:

Theorem 5.1. In an n-dimensional generalized B ϕ-recurrent Kenmotsu man-
ifold, the non-zero 1-form A is given by (36) provided that a0(n− 1) + a1[(n−
2)(n− 1)− r]− 2a2r(n− 1) ̸= 0.

Next, if we assume that the scalar curvature of an n-dimensional generalized
B ϕ-recurrent Kenmotsu manifold is constant, then drW = 0.

Hence the equation (36) turns into

A(W ) = 0.(37)

By using (37) in (32), we get

ϕ2((∇WB)(X,Y )Z) = 0.(38)

Hence we can formulate the following:

Theorem 5.2. The generalized B ϕ-recurrent Kenmotsu manifold with con-
stant scalar curvature r is reduces to a generalized B ϕ-symmetric manifold.

References

[1] A. Barman and U. C. De, Projective curvature tensor of a semi-symmetric metric con-

nection in a Kenmotsu manifold, Int. Electron. J. Geom. 6 (2013), no. 1, 159–169.
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,

Vol. 509, Springer-Verlag, Berlin, 1976.

[3] Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73–80.
[4] J.-B. Jun, U. C. De, and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42

(2005), no. 3, 435–445. https://doi.org/10.4134/JKMS.2005.42.3.435
[5] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2)

24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594

[6] A. Prakash, On concircularly ϕ-recurrent Kenmotsu manifolds, Bull. Math. Anal. Appl.
3 (2011), no. 2, 83–88.

[7] A. A. Shaikh and H. Kundu, On equivalency of various geometric structures, J. Geom.

105 (2014), no. 1, 139–165. https://doi.org/10.1007/s00022-013-0200-4
[8] K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo

16 (1940), 195–200. http://projecteuclid.org/euclid.pja/1195579139
[9] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World

Scientific Publishing Co., Singapore, 1984.

[10] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transforma-

tion group, J. Diff. Geom. 2 (1968), 161–184. http://projecteuclid.org/euclid.jdg/
1214428253

https://doi.org/10.4134/JKMS.2005.42.3.435
https://doi.org/10.2748/tmj/1178241594
https://doi.org/10.1007/s00022-013-0200-4
http://projecteuclid.org/euclid.pja/1195579139
http://projecteuclid.org/euclid.jdg/1214428253
http://projecteuclid.org/euclid.jdg/1214428253


900 KUMAR, MURTHY, SOMASHEKHARA, AND VENKATESHA

Rahuthanahalli Thimmegowda Naveen Kumar

Department of Mathematics

Siddaganga Institute of Technology
Tumakuru-572 103, Karnataka, India

Email address: rtnaveenkumar@gmail.com, naveenrt@sit.ac.in

Basavaraju Phalaksha Murthy

Department of Mathematics

Government First Grade College
Chitradurga - 577 501, Karnataka, India

Email address: pmurthymath@gmail.com

Puttasiddappa Somashekhara

Department of Mathematics

Government First Grade College
Kadur-577 548, Chikkamagaluru, Karnataka, India

Email address: somumathrishi@gmail.com

Venkatesha Venkatesha

Department of Mathematics

Kuvempu University
Shimoga - 577 451, Karnataka, India

Email address: vensmath@gmail.com


