• Title/Summary/Keyword: generalized quadratic and additive functional equation

Search Result 18, Processing Time 0.023 seconds

ON THE HYERS-ULAM STABILITY OF A GENERALIZED QUADRATIC AND ADDITIVE FUNCTIONAL EQUATION

  • JUN, KIL-WOUNG;KIM, HARK-MAHN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.133-148
    • /
    • 2005
  • In this paper, we obtain the general solution of a gen-eralized quadratic and additive type functional equation f(x + ay) + af(x - y) = f(x - ay) + af(x + y) for any integer a with a $\neq$ -1. 0, 1 in the class of functions between real vector spaces and investigate the generalized Hyers- Ulam stability problem for the equation.

ON AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION AND ITS STABILITY

  • PARK WON-GIL;BAE JAE-HYEONG;CHUNG BO-HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.563-572
    • /
    • 2005
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the additive-quadratic functional equation f(x + y, z + w) + f(x + y, z - w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w).

ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

  • Lee, Jung-Rye;Jang, Sun-Young;Shin, Dong-Yun
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.65-80
    • /
    • 2010
  • In [17, 18], the fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations in fuzzy Banach spaces: (0.1) f(x + y) + f(x - y) = 2f(x) + 2f(y), (0.2) f(ax + by) + f(ax - by) = $2a^2 f(x)\;+\;2b^2f(y)$ for nonzero real numbers a, b with $a\;{\neq}\;{\pm}1$.

A FIXED POINT APPROACH TO THE STABILITY OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS IN MODULAR SPACES

  • Kim, Changil;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.321-330
    • /
    • 2015
  • In this paper, we prove the generalized Hyers-Ulam stability for the following additive-quadratic functional equation f(2x + y) + f(2x - y) = f(x + y) + f(x - y) + 4f(x) + 2f(-x) in modular spaces by using a fixed point theorem for modular spaces.

A FIXED POINT APPROACH TO THE ORTHOGONAL STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • JEON, YOUNG JU;KIM, CHANG IL
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.627-634
    • /
    • 2015
  • In this paper, we investigate the following orthogonally additive-quadratic functional equation f(2x + y) - f(x + 2y) - f(x + y) - f(y - x) - f(x) + f(y) + f(2y) = 0. and prove the generalized Hyers-Ulam stability for it in orthogonality spaces by using the fixed point method.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

FUZZY ALMOST q-CUBIC FUNCTIONAL EQATIONS

  • Kim, ChangIl
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.239-249
    • /
    • 2017
  • In this paper, we approximate a fuzzy almost cubic function by a cubic function in a fuzzy sense. Indeed, we investigate solutions of the following cubic functional equation $$3f(kx+y)+3f(kx-y)-kf(x+2y)-2kf(x-y)-3k(2k^2-1)f(x)+6kf(y)=0$$. and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.