FUZZY ALMOST q-CUBIC FUNCTIONAL EQATIONS

ChangIl Kim*

Abstract

In this paper, we approximate a fuzzy almost cubic function by a cubic function in a fuzzy sense. Indeed, we investigate solutions of the following cubic functional equation $$
\begin{aligned} & 3 f(k x+y)+3 f(k x-y)-k f(x+2 y)-2 k f(x-y) \\ - & 3 k\left(2 k^{2}-1\right) f(x)+6 k f(y)=0 . \end{aligned}
$$ and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

1. Introduction and preliminaries

In 1940, Ulam proposed the following stability problem (cf. [24]):
"Let G_{1} be a group and G_{2} a metric group with the metric d. Given a constant $\delta>0$, does there exists a constant $c>0$ such that if a mapping $f: G_{1} \longrightarrow G_{2}$ satisfies $d(f(x y), f(x) f(y))<c$ for all $x, y \in G_{1}$, then there exists a unique homomorphism $h: G_{1} \longrightarrow G_{2}$ with $d(f(x), h(x))<$ δ for all $x \in G_{1}$?"
In the next year, Hyers [11] gave a partial solution of Ulam's problem for the case of approximate additive mappings. Subsequently, his result was generalized by Aoki [1] for additive mappings, and by Rassias [22] for linear mappings, to consider the stability problem with unbounded Cauchy differences. During the last decades, the stability problems of functional equations have been extensively investigated by a number of mathematicians ([5], [6], [7], [10], [20]).

Recently, the stability problems in the fuzzy spaces has been extensively studied ([13], [18], [19]). The concept of fuzzy norm on a linear space was introduced by Katsaras [15] in 1984. Later, Cheng and Mordeson [4] gave a new definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [14]. In

[^0]2008, for the first time, Mirmostafaee and Moslehian ([18], [19]) used the definition of a fuzzy norm in [2] to obtain a fuzzy version of stability for the Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

and the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) . \tag{1.2}
\end{equation*}
$$

We call a solution of (1.1) an additive mapping and a solution of (1.2) is called a quadratic mapping. In 2001, Rassias [23] introduced the following cubic functional equation

$$
\begin{equation*}
f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y)=0 \tag{1.3}
\end{equation*}
$$

and every solution of the cubic functional equation is called a cubic mapping

In this paper, we consider the following functional equation

$$
\begin{align*}
& 3 f(k x+y)+3 f(k x-y)-k f(x+2 y)-2 k f(x-y) \\
- & 3 k\left(2 k^{2}-1\right) f(x)+6 k f(y)=0 \tag{1.4}
\end{align*}
$$

for some fixed non-zero rational number k and show the generalized Hyers-Ulam stability of (1.4) in a fuzzy sense.

Definition 1.1. Let X be a real vector space. A function $N: X \times$ $\mathbb{R} \longrightarrow[0,1]$ is called a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
(N1) $N(x, t)=0$ for $t \leq 0$;
(N2) $x=0$ if and only if $N(x, t)=1$ for all $t>0$;
(N3) $N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
(N4) $N(x+y, s+t) \geq \min \{N(x, s), \quad N(y, t)\}$;
(N5) $N(x, \cdot)$ is a nondecreasing function of \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(N6) for any $x \neq 0, N(x, \cdot)$ is continuous on \mathbb{R}.
In this case, the pair (X, N) is called a fuzzy normed space.
Let (X, N) be a fuzzy normed space. A sequence $\left\{x_{n}\right\}$ in X is said to be convergent in (X, N) if there exists an $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In this case, x is called the limit of the sequence $\left\{x_{n}\right\}$ in (X, N) and one denotes it by $N-\lim _{n \rightarrow \infty} x_{n}=x$. A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy if for any $\epsilon>0$, there is an $m \in N$ such that for any $n \geq m$ and any positive integer p, $N\left(x_{n+p}-x_{n}, t\right)>1-\epsilon$ for all $t>0$.

It is well known that every convergent sequence in a fuzzy normed space is Cauchy. A fuzzy normed space is said to be complete if each

Cauchy sequence in it is convergent and the a complete fuzzy normed space is called a fuzzy Banach space.

2. Solutions and the stability of (1.4)

In this section, we investigate solutions of (1.4) and prove the generalized Hyers-Ulam stability of (1.4) in fuzzy Banach spaces.

We start with the following theorem.
Theorem 2.1. Let X and Y be normed spaces and $f: X \longrightarrow Y$ a mapping with $f(0)=0$. Suppose that f satisfies (1.4) and $k \neq 0$. Then f is a cubic mapping.

Proof. Suppose that f satisfies (1.4). If $k=1$, then f satisfies (1.3) and so f is a cubic mapping. Suppose that $k \neq 1$.

Setting $y=0$ in (1.4), we have

$$
\begin{equation*}
f(k x)=k^{3} f(x) \tag{2.1}
\end{equation*}
$$

for all $x \in X$ and setting $x=0$ and $y=x$ in (1.4), we have

$$
\begin{equation*}
3 f(x)+3 f(-x)=k f(2 x)+2 k f(-x)-6 k f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$. Replacing x by $-x$ in (2.2), we have

$$
\begin{equation*}
3 f(x)+3 f(-x)=k f(-2 x)+2 k f(x)-6 k f(-x) \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Since $k \neq 0$, by (2.2) and (2.3), we have

$$
\begin{equation*}
f(2 x)-f(-2 x)=8[f(x)-f(-x)] \tag{2.4}
\end{equation*}
$$

for all $x \in X$. Relpacing y by $k y$ in (1.4), by (2.1), we have

$$
\begin{align*}
& 3 k^{2}[f(x+y)+f(x-y)] \\
& \quad-f(x+2 k y)-2 f(x-k y)-3\left(2 k^{2}-1\right) f(x)+6 k^{3} f(y)=0 \tag{2.5}
\end{align*}
$$

for all $x, y \in X$ and letting $y=-y$ in (2.5), we have

$$
\begin{align*}
& 3 k^{2}[f(x+y)+f(x-y)] \\
& \quad-f(x-2 k y)-2 f(x+k y)-3\left(2 k^{2}-1\right) f(x)+6 k^{3} f(-y)=0 \tag{2.6}
\end{align*}
$$

for all $x, y \in X$. By (2.5) and (2.6), we have
$[f(x+2 k y)-f(x-2 k y)]-2[f(x+k y)-f(x-k y)]-6 k^{3}[f(y)-f(-y)]=0$
for all $x, y \in X$. Letting $y=\frac{1}{k} y$ in (2.7), we have
(2.8) $[f(x+2 y)-f(x-2 y)]-2[f(x+y)-f(x-y)]-6[f(y)-f(-y)]=0$
for all $x, y \in X$.

Let $f_{o}(x)=\frac{f(x)-f(-x)}{2}$. Then f_{o} satisfies (2.8). By (2.4), we have

$$
\begin{equation*}
f_{o}(2 y)=8 f_{o}(y) \tag{2.9}
\end{equation*}
$$

for all $y \in X$. Letting $x=2 x$ in (2.8), by (2.9), we have

$$
\begin{equation*}
4\left[f_{o}(x+y)-f_{o}(x-y)\right]=f_{o}(2 x+y)-f_{o}(2 x-y)+6 f_{o}(y) \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$. Interchanging x and y in (2.10), we have

$$
\begin{equation*}
4\left[f_{o}(x+y)+f_{o}(x-y)\right]=f_{o}(x+2 y)+f_{o}(x-2 y)+6 f_{o}(x) \tag{2.11}
\end{equation*}
$$

for all $x, y \in X$. By (2.8) and (2.11), we have

$$
f_{o}(x+2 y)-3 f_{o}(x+y)+3 f_{o}(x)-f_{o}(x-y)-6 f_{o}(y)=0
$$

for all $x, y \in X$ and hence f_{0} is a cubic mapping.
Let $f_{e}(x)=\frac{f(x)+f(-x)}{2}$. Then f_{e} satisfies (2.8) and so we have

$$
\begin{equation*}
f_{e}(x+2 y)-f_{e}(x-2 y)-2\left[f_{e}(x+y)-f_{e}(x-y)\right]=0 \tag{2.12}
\end{equation*}
$$

for all $x, y \in X$. Letting $y=x$ in (2.12), we have

$$
f_{e}(3 x)=2 f_{e}(2 x)+f_{e}(x)
$$

for all $x \in X$ and letting $y=2 x$ in (2.12), we have

$$
f_{e}(4 x)=2 f_{e}(3 x)-2 f_{e}(x)
$$

for all $x \in X$. Hence we have $f_{e}(4 x)=4 f_{e}(2 x)$ for all $x \in X$ and so

$$
f_{e}(2 x)=4 f_{e}(x), \quad f_{e}(3 x)=9 f_{e}(x), \quad f_{e}(4 x)=16 f_{e}(x)
$$

for all $x \in X$. By induction on n, we have

$$
f_{e}(n x)=n^{2} f_{e}(x)
$$

for all $x \in X$ and all $n \in \mathbb{N}$ and hence

$$
\begin{equation*}
f_{e}(r x)=r^{2} f_{e}(x) \tag{2.13}
\end{equation*}
$$

for all $x \in X$ and all rational number r. Since k is a non-zero rational number, by (2.1) and (2.13), we have

$$
k^{3} f_{e}(x)=k^{2} f_{e}(x) .
$$

Since $k \neq 0,1, f_{e}(x)=0$ for all $x \in X$. Hence $f=f_{o}+f_{e}=f_{o}$ is a cubic mapping.

Let (X, N) be a fuzzy normed space and $\left(Y, N^{\prime}\right)$ a fuzzy Banach space. For any mapping $f: X \longrightarrow Y$, we define the difference operator $D f: X^{2} \longrightarrow Y$ by

$$
\begin{aligned}
D f(x, y)= & 3 f(k x+y)+3 f(k x-y)-k f(x+2 y)-2 k f(x-y) \\
& -3 k\left(2 k^{2}-1\right) f(x)+6 k f(y)
\end{aligned}
$$

for all $x, y \in X$ and some non-zero real number k.
For a given real number q with $q>0$, the mapping f is said to be a fuzzy q-almost cubic mapping if

$$
\begin{equation*}
N^{\prime}(D f(x, y), t+s) \geq \min \left\{N\left(x, t^{q}\right), N\left(y, s^{q}\right)\right\} \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$ and all positive real numbers t, s.
THEOREM 2.2. Let q be a positive real number withwith $|k|^{3 q-1}>1$ and $f: X \longrightarrow Y$ a fuzzy q-almost cubic mapping with $f(0)=0$. Then there exists a unique cubic mapping $F: X \longrightarrow Y$ such that

$$
\begin{equation*}
N^{\prime}(F(x)-f(x), t) \geq N\left(x, \frac{3^{q}\left(|k|^{3}-|k|^{p}\right)^{q} t^{q}}{2^{q}|k|^{3 q-1}}\right) \tag{2.15}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where $p=\frac{1}{q}$.
Proof. Letting $y=0$ and $s=t$ in (2.14), we get

$$
\begin{equation*}
N^{\prime}\left(f(k x)-k^{3} f(x), \frac{t}{3}\right) \geq N\left(x, t^{q}\right) \tag{2.16}
\end{equation*}
$$

for all $x \in X$ and all $t>0$ and replacing x by $k^{n} x$ in (2.16), we get

$$
N^{\prime}\left(f\left(k^{n+1} x\right)-k^{3} f\left(k^{n} x\right), \frac{t}{3}\right) \geq N\left(x, \frac{t^{q}}{|k|^{n}}\right)
$$

for all $x \in X$, all $n \in \mathbb{N}$, and all $t>0$. Hence we have

$$
N^{\prime}\left(f\left(k^{n+1} x\right)-k^{3} f\left(k^{n} x\right), \frac{1}{3}|k|^{\frac{n}{q}} t^{\frac{1}{q}}\right) \geq N(x, t)
$$

for all $x \in X$, all $n \in \mathbb{N}$, and all $t>0$ and so we get

$$
N^{\prime}\left(\frac{f\left(k^{n+1} x\right)}{k^{3(n+1)}}-\frac{f\left(k^{n} x\right)}{k^{3 n}}, \frac{1}{3}|k|^{n(p-3)-3} t^{p}\right) \geq N(x, t)
$$

for all $x \in X$, all $n \in \mathbb{N}$, and all $t>0$. For $n>m \geq 0$, we have

$$
\begin{align*}
& N^{\prime}\left(\frac{f\left(k^{n} x\right)}{k^{3 n}}-\frac{f\left(k^{m} x\right)}{k^{3 m}}, \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(p-3)-3} t^{p}\right) \tag{2.17}\\
& =N^{\prime}\left(\sum_{i=m+1}^{n}\left[\frac{f\left(k^{i} x\right)}{k^{3 i}}-\frac{f\left(k^{i-1} x\right)}{k^{3(i-1)}}\right], \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(p-3)-3} t^{p}\right) \\
& \geq \min \left\{\left.N^{\prime}\left(\frac{f\left(k^{i} x\right)}{k^{3 i}}-\frac{f\left(k^{i-1} x\right)}{k^{3(i-1)}}, \frac{1}{3}|k|^{i(p-3)-3} t^{p}\right) \right\rvert\, m+1 \leq i \leq n\right\} \\
& \geq N(x, t)
\end{align*}
$$

for all $x \in X$ and all positive integer n.

Let $x \in X, c>0$ and $\epsilon>0$. By (N5), there is a t_{0} such that

$$
N\left(x, t_{0}\right) \geq 1-\epsilon
$$

for all $x \in X$. Since $|k|^{3 q-1}>1,|k|^{p-3}<1$ and so $\sum_{n=1}^{\infty}|k|^{n(p-3)-3} t_{0}^{p}$ is convergent. Hence there is a positive integer n_{0} such that for any $n \in \mathbb{N}$ with $n \geq n_{0}, \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(p-3)-3} t_{0}^{p}<c$ and so for $n>m \geq 0$, we have

$$
\begin{aligned}
& N^{\prime}\left(\frac{f\left(k^{n} x\right)}{k^{3 n}}-\frac{f\left(k^{m} x\right)}{k^{3 m}}, c\right) \\
& \quad \geq N^{\prime}\left(\frac{f\left(k^{n} x\right)}{k^{3 n}}-\frac{f\left(k^{m} x\right)}{k^{3 m}}, \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(p-3)-3} t_{0}^{p}\right) \\
& \quad \geq N\left(x, t_{0}\right) \geq 1-\epsilon
\end{aligned}
$$

and thus $\left\{\frac{f\left(k^{n} x\right)}{k^{3 n}}\right\}$ is a Cauchy sequence in $\left(Y, N^{\prime}\right)$. Since $\left(Y, N^{\prime}\right)$ is a fuzzy Banach space, there is an $F(x)$ in Y such that

$$
F(x)=N-\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{3 n}}
$$

Clearly, $F: X \longrightarrow Y$ is a mapping. Letting $m=0$ in (2.17), we get

$$
N^{\prime}\left(\frac{f\left(k^{n} x\right)}{k^{3 n}}-f(x), \sum_{i=1}^{n} \frac{1}{3}|k|^{i(p-3)-3} t^{p}\right) \geq N(x, t)
$$

for all $x \in X$ and all positive integer n and so we have

$$
\begin{equation*}
N^{\prime}\left(\frac{f\left(k^{n} x\right)}{k^{3 n}}-f(x), t\right) \geq N\left(x, \frac{t^{q}}{\left(\sum_{i=1}^{n} \frac{1}{3}|k|^{i(p-3)-3}\right)^{q}}\right) \tag{2.18}
\end{equation*}
$$

for all $x \in X, n \in \mathbb{N}$, and $t>0$.
Now, we will show that F satisfies (1.4). Let $x, y \in X$. By (N4), we have

$$
\begin{aligned}
& N^{\prime}(D F(x, y), t) \\
& \qquad \min \left\{N^{\prime}\left(3 F(k x+y)-\frac{3 f\left(k^{n}(k x+y)\right)}{k^{3 n}}, \frac{t}{7}\right),\right. \\
& \\
& N^{\prime}\left(3 F(k x-y)-\frac{3 f\left(k^{n}(k x-y)\right)}{k^{3 n}}, \frac{t}{7}\right), \\
& \\
& \quad N^{\prime}\left(k F(x+2 y)-\frac{k f\left(k^{n}(x+2 y)\right)}{k^{3 n}}, \frac{t}{7}\right), \\
& \\
& \quad N^{\prime}\left(2 k F(x-y)-\frac{2 k f\left(k^{n}(x-y)\right)}{k^{3 n}}, \frac{t}{7}\right), \\
& \\
& \quad N^{\prime}\left(3 k\left(2 k^{2}-1\right) F(x)-\frac{3 k\left(2 k^{2}-1\right) f\left(k^{n} x\right)}{k^{3 n}}, \frac{t}{7}\right), \\
& \\
& \left.N^{\prime}\left(6 k F(y)-\frac{6 k f\left(k^{n} y\right)}{k^{3 n}}, \frac{t}{7}\right), N^{\prime}\left(\frac{D f\left(k^{n} x, k^{n} y\right)}{k^{3 n}}, \frac{t}{7}\right)\right\}
\end{aligned}
$$

for all $x, y \in X$ and all positive integer n. The first six terms on the right-hand of the above inequality tend to 1 as $n \rightarrow \infty$ and by (2.14), we have

$$
N^{\prime}\left(\frac{D f\left(k^{n} x, k^{n} y\right)}{k^{3 n}}, \frac{t}{7}\right) \geq N\left(x,|k|^{(3 q-1) n}\left(\frac{t}{14}\right)^{q}\right)
$$

for all $x, y \in X$, all positive integer n and all $t>0$. Since $|k|^{3 q-1}>1$, Hence $N^{\prime}(D F(x, y), t)=0$ for all $x, y \in X$ and all $t>0$. By (N2), $D F(x, y)=0$ for all $x, y \in X$ and by Theorem $2.1, F$ is a cubic mapping.

Now, we will show that (2.15) holds. Let $x \in X$ and $t>0$. By (2.18), for large enough n, we get

$$
\begin{aligned}
& N^{\prime}(F(x)-f(x), t) \\
& \quad \geq \min \left\{N^{\prime}\left(F(x)-\frac{f\left(k^{n} x\right)}{k^{3 n}}, \frac{t}{2}\right), N^{\prime}\left(f(x)-\frac{f\left(k^{n} x\right)}{k^{3 n}}, \frac{t}{2}\right)\right\} \\
& \quad \geq N\left(x, \frac{t^{q}}{\left(\sum_{i=1}^{n} \frac{2}{3}|k|^{i(p-3)-3}\right)^{q}}\right) \\
& \quad \geq N\left(x, \frac{3^{q}\left(|k|^{6}-|k|^{p+3}\right)^{q} t^{q}}{2^{q}|k|}\right)
\end{aligned}
$$

for all $x \in X$ and all $n \in \mathbb{N}$ and so we have (2.15).
To prove the uniqueness of F, let $F_{1}: X \longrightarrow Y$ be another cubic mapping satisfying (2.15). Then we have

$$
\begin{aligned}
& N^{\prime}\left(F(x)-F_{1}(x), t\right)=N^{\prime}\left(F\left(k^{n} x\right)-F_{1}\left(k^{n} x\right),|k|^{3 n} t\right) \\
& \geq \min \left\{N^{\prime}\left(F\left(k^{n} x\right)-f\left(k^{n} x\right),|k|^{3 n} \frac{t}{2}\right), N^{\prime}\left(f\left(k^{n} x\right)-F_{1}\left(k^{n} x\right),|k|^{3 n} \frac{t}{2}\right)\right\} \\
& \geq N\left(x, \frac{3^{q}\left(|k|^{6}-|k|^{p+3}\right)^{q}|k|^{n(3 q-1)-1} t^{q}}{4^{q}}\right)
\end{aligned}
$$

for all $x, y \in X$, all positive integer n and all $0<s<t$. Since $|k|^{3 q-1}>1$,

$$
\lim _{n \rightarrow \infty} N\left(x, \frac{3^{q}\left(|k|^{6}-|k|^{p+3}\right)^{q}|k|^{n(3 q-1)-1} t^{q}}{4^{q}}\right)=1
$$

and so $N^{\prime}\left(F(x)-F_{1}(x), t\right)=1$ for all $t>0$. Hence $F=F_{1}$.
Theorem 2.3. Let q be a positive real number withwith $|k|^{3 q-1}<1$ and $f: X \longrightarrow Y$ a fuzzy q-almost cubic mapping with $f(0)=0$. Then there exists a unique cubic mapping $F: X \longrightarrow Y$ such that

$$
\begin{equation*}
N^{\prime}(F(x)-f(x), t) \geq N\left(x, \frac{3^{q}\left(|k|^{p}-|k|^{3}\right)^{q} t^{q}}{2^{q}|k|^{3 q-1}}\right) \tag{2.19}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Letting $y=\frac{x}{k}$ in (2.16), we get

$$
\begin{equation*}
N^{\prime}\left(f(x)-k^{3} f\left(\frac{x}{k}\right), \frac{t}{3}\right) \geq N\left(x,|k| t^{q}\right) \tag{2.20}
\end{equation*}
$$

for all $x \in X$ and all $t>0$ and replacing x by $\frac{x}{k^{n}}$ in (2.20), we get

$$
N^{\prime}\left(f\left(\frac{x}{k^{n}}\right)-k^{3} f\left(\frac{x}{k^{n+1}}\right), \frac{t}{3}\right) \geq N\left(x,|k|^{n+1} t^{q}\right)
$$

for all $x \in X$, all $n \in \mathbb{N}$, and all $t>0$. Hence we have

$$
N^{\prime}\left(k^{3 n} f\left(\frac{x}{k^{n}}\right)-k^{3(n+1)} f\left(\frac{x}{k^{n+1}}\right), \frac{1}{3}|k|^{n(3-p)-p} t^{p}\right) \geq N(x, t)
$$

for all $x \in X$, all $n \in \mathbb{N}$, and all $t>0$. For $n>m \geq 0$, we have

$$
\begin{align*}
& N^{\prime}\left(k^{3 n} f\left(\frac{x}{k^{n}}\right)-k^{3 m} f\left(\frac{x}{k^{m}}\right) \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(3-p)-p} t^{p}\right) \tag{2.21}\\
\geq & \min \left\{\left.N^{\prime}\left(k^{3 i} f\left(\frac{x}{k^{i}}\right)-k^{3(i-1)} f\left(\frac{x}{k^{i-1}}\right), \frac{1}{3}|k|^{i(3-p)-p} t^{p}\right) \right\rvert\, m+1 \leq i \leq n\right\} \\
\geq & N(x, t)
\end{align*}
$$

for all $x \in X$ and all positive integer n.

Let $x \in X, c>0$ and $\epsilon>0$. By (N5), there is a t_{0} such that

$$
N\left(x, t_{0}\right) \geq 1-\epsilon
$$

for all $x \in X$. Since $|k|^{3 q-1}<1,|k|^{3-p}<1$ and so $\sum_{n=1}^{\infty}|k|^{n(3-p)-p} t_{0}^{p}$ is convergent. Hence there is a positive integer n_{0} such that for any $n \in \mathbb{N}$ with $n \geq n_{0}, \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(3-p)-p} t_{0}^{p}<c$ and so for $n>m \geq 0$, we have

$$
\begin{aligned}
& N^{\prime}\left(k^{3 n} f\left(\frac{x}{k^{n}}\right)-k^{3 m} f\left(\frac{x}{k^{m}}\right), c\right) \\
\geq & N^{\prime}\left(k^{3 n} f\left(\frac{x}{k^{n}}\right)-k^{3 m} f\left(\frac{x}{k^{m}}\right), \sum_{i=m+1}^{n} \frac{1}{3}|k|^{i(3-p)-p} t_{0}^{p}\right) \geq N\left(x, t_{0}\right) \\
\geq & 1-\epsilon
\end{aligned}
$$

and thus $\left\{k^{3 n} f\left(\frac{x}{k^{n}}\right)\right\}$ is a Cauchy sequence in $\left(Y, N^{\prime}\right)$. Since $\left(Y, N^{\prime}\right)$ is a fuzzy Banach space, there is an $F(x)$ in Y such that

$$
F(x)=N-\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{3 n}} .
$$

The rest of the proof is similar to Theorem 2.2.
Using Theorem 2.2- 2.3, we have the following corollary :
Corollary 2.4. Let q be a positive real number with $q \neq \frac{1}{3}$ and $f: X \longrightarrow Y$ a fuzzy q-almost cubic mapping. Then there exists a unique cubic mapping $F: X \longrightarrow Y$ such that

$$
N^{\prime}(F(x)-f(x), t) \geq \begin{cases}N\left(x, \frac{3^{q}\left(|k|^{3}-|k|^{p}\right)^{q}}{2 q} t^{q}\right), & \text { if }|k|^{3 q-1}>1 \\ N\left(x, \frac{3^{q}\left(\left.|k|\right|^{p}-\left.|k|\right|^{3}\right)}{\left.2^{q}|k|\right|^{3 q-1}} t^{q}\right), & \text { if }|k|^{3 q-1}<1\end{cases}
$$

for all $x \in X$ and all $t>0$.
We can use Theorem 2.2-2.3 to get a classical result in the framework of normed spaces. For example, it is well known that for any normed space $(X,\|\cdot\|)$, the mapping $N_{X}: X \times \mathbb{R} \longrightarrow[0,1]$, defined by

$$
N_{X}(x, t)= \begin{cases}0, & \text { if } t<\|x\| \\ 1, & \text { if } t \geq\|x\|\end{cases}
$$

a fuzzy norm on X. In [17], [18] and [19], some examples are provided for the fuzzy norm N_{X}. Here using the fuzzy norm N_{X}, we have the following corollary.

Corollary 2.5. Let X and Y be normed spaces. Let $f: X \longrightarrow Y$ be a mapping such that $f(0)=0$ and

$$
\begin{equation*}
\|D f(x, y)\| \leq\|x\|^{p}+\|y\|^{p} \tag{2.22}
\end{equation*}
$$

for a fixed positive number p such that $p \neq 3$. Then there exists a unique cubic mapping $F: X \longrightarrow Y$ such that the inequality

$$
\|F(x)-f(x)\| \leq \begin{cases}\frac{2\|k\|^{p}}{3\left(\|k\|^{6}-\|k\|^{p+3}\right)}\|x\|^{p}, & \text { if }|k|^{3 q-1}>1 \\ \frac{2\|k\|^{3}}{3\left(\|k\|^{2 p}-\|k\|^{p+3}\right)}\|x\|^{p}, & \text { if }|k|^{3 q-1}<1\end{cases}
$$

holds for all $x \in X$.
Proof. By the definition of N_{Y}, we have

$$
N_{Y}(D f(x, y), s+t)= \begin{cases}0, & \text { if } s+t<\|D f(x, y)\| \\ 1, & \text { if } s+t \geq\|D f(x, y)\|\end{cases}
$$

for all $x, y \in X$ and all $s, t \in \mathbb{R}$. Now, we claim that

$$
N_{Y}(D f(x, y), s+t) \geq \min \left\{N_{X}\left(x, s^{q}\right), N_{X}\left(y, t^{q}\right)\right\}
$$

for all $x, y \in X$ and $s, t>0$, where $q=\frac{1}{p}$. If $N_{Y}(D f(x, y), s+t)=1$, then it is trivial. Suppose that $N_{Y}(D f(x, y), s+t)=0$. Then $s+t<$ $\|D f(x, y)\|$. If $s \geq\|x\|^{p}$ and $t \geq\|y\|^{p}$, then, by (2.22),

$$
\|D f(x, y)\| \leq\|x\|^{p}+\|y\|^{p}<s+t
$$

which is a contradiction. Hence either $s<\|x\|^{p}$ or $t<\|y\|^{p}$, that is, either $N_{X}\left(x, s^{q}\right)=0$ or $N_{X}\left(y, t^{q}\right)=0$ and thus f is a fuzzy q almost cubic mapping. By Theorem 2.2 and Theorem 2.3, we have the results.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 3 (2003), 687705.
[3] I. S. Chang and Y. H. Lee, Additive and quadratic type of functional equation and its fuzzy stability, Results Math. To Appear.
[4] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429436.
[5] P. W. Cholewa, Remarkes on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[6] K Cieplinski, Applications of fixed point theorems to the hyers-ulam stability of functional equation-A survey, Ann. Funct. Anal. 3 (2012), no. 1, 151-164.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[8] H. Drygas, Quasi-inner products and their applications A. K. Gupta (ed.), Advances in Multivariate Statistical Analysis, 13-30, Reidel Publ. Co., 1987.
[9] V. A. Faiziev and P. K. Sahoo, On the stability of Drygas functional equation on groups, Banach Journal of Mathematical Analysis, 01/2007; 1 (2007), 43-55.
[10] P. Gǎvruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[12] C. I. Kim, G. Han, and S. A. Shim, Hyers-Ulam Stability for a Class of Quadratic Functional Equations via a Typical Form, Abs. and Appl. Anal. 2013 (2013), 1-8.
[13] H. M. Kim, J. M. Rassias, and J. Lee, Fuzzy approximation of Euler-Lagrange quadratic mappings, Journal of inequalities and Applications, 2013 (2013), 1-15.
[14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326334.
[15] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143154.
[16] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
[17] A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 159 (2008), 730738.
[18] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. 52 (2008), 161177.
[19] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159 (2008), 720729.
[20] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bulletin of the Brazilian Mathematical Society, 37 (2006), no. 3, 361376.
[21] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 399-415.
[22] Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math. Sco. 72 (1978), 297-300.
[23] J. M. Rassias, Solution of the Ulam stability problem for cubic mappings Glasnik Matematički, 36 (2001), no. 56, 63-72.
[24] S. M. Ulam, A collection of mathematical problems, Interscience Publisher, New York, 1964.
*
Department of Mathematics Education
Dankook University
Yongin 16890, Republic of Korea
E-mail: kci206@hanmail.net

[^0]: Received February 04, 2017; Accepted April 11, 2017.
 2010 Mathematics Subject Classification: Primary 39B52, 46S40.
 Key words and phrases: additive-quadratic mapping, fuzzy almost quadraticadditive mapping, fuzzy normed space.

