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Abstract. We will prove the generalized Hyers-Ulam stability of cubic-quadratic-additive

type functional equations and general cubic functional equations whose solutions are cubic-

quadratic-additive mappings and general cubic mappings, respectively.

1. Introduction

Throughout this paper, we assume that V and W are real vector spaces and k
is a real number satisfying k 6∈ {−1, 0, 1} unless there are specifications for them.
For any given mapping f : V →W , we will set

D1f(x, y) = f(x+ ky)− k2 + k

2
f(x+ y) + (k2 − 1)f(x)− k2 − k

2
f(x− y)

− f(ky) +
k2 + k

2
f(y) +

k2 − k
2

f(−y),

D2f(x, y) = f(x+ 2y)− f(x− 2y)− 2f(x+ y) + 2f(x− y) + 6f(y) + 2f(−y)

− 2f(2y),

D3f(x, y) = f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y) + 2(k2 − 1)f(x),

D4f(x, y) = f(x+ 3y)− 5f(x+ 2y) + 10f(x+ y)− 10f(x) + 5f(x− y)

− f(x− 2y) + 4f(y) + 4f(−y)− f(2y)− f(−2y),
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D5f(x, y) = f(x+ 2y)− f(x− 2y)− 2f(x+ y) + 2f(x− y)− 2f(3y) + 6f(2y)

− 6f(y),

D6f(x, y, z) = f(x+ y + z) + f(x− y − z) + f(x− y + z) + f(x+ y − z)
− 2f(x+ y)− 2f(x− y)− 2f(x+ z)− 2f(x− z) + 4f(x),

D7f(x, y, z) = f(x+ y + z)− f(x− y − z)− f(x+ y) + f(x− y)− f(x+ z)

+ f(x− z)− f(y + z) + f(−y − z) + f(y)− f(−y) + f(z)− f(−z)

for all x, y, z ∈ V .
Every solution of functional equation

1∑
i=0

(−1)1−i1Cif(x+ iy)− f(y) = 0

is called an additive mapping, and each solution of functional equation

2∑
i=0

(−1)2−i2Cif(x+ iy)− 2!f(y) = 0

is called a quadratic mapping, while every solution of functional equation

3∑
i=0

(−1)3−i3Cif(x+ iy)− 3!f(y) = 0

is called a cubic mapping.
If a mapping can be expressed by the sum of an additive mapping, a quadratic

mapping, and a cubic mapping, then we call the mapping a cubic-quadratic-additive
mapping. If a mapping can be expressed by the sum of a constant, an additive map-
ping, a quadratic mapping, and a cubic mapping, then we call the mapping a gen-
eral cubic mapping. A functional equation is called a cubic-quadratic-additive type
functional equation if each solution of that equation is a cubic-quadratic-additive
mapping. A functional equation is called a general cubic type functional equation
when each of its solutions is a general cubic mapping.

In 1940, Ulam [13] raised an important problem concerning the stability of
group homomorphisms: Under what conditions is the approximate solution of an
equation necessarily close to the exact solution of the equation? Just the following
year, Hyers [8] solved the problem of Ulam only in the case of the Cauchy additive
functional equation Af(x, y) = f(x + y) − f(x) − f(y) = 0. Indeed, Hyers proved
the following statement for any previously given constant ε > 0: every solution of
inequality ‖Af(x, y)‖ ≤ ε (for all x and y) can be approximated by an exact solution
(an additive function). In this case, the Cauchy additive functional equation is said
to satisfy the Hyers-Ulam stability.

About three decades later, Rassias [12] generalized Hyers’ result and then
Găvruta [7] extended Rassias’ result by allowing unbounded control functions. The
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concept of stability introduced by Rassias and Găvruta is known today as the gen-
eralized Hyers-Ulam stability of functional equations.

Jun et al. [9] and Lee [10] investigated the stability of the general cubic
functional equation D3f(x, y) = 0 for k = 2. Independently from them, Gordji
[3] investigated the stability of the cubic-quadratic-additive functional equation
D5f(x, y) = 0. Moreover, Gordji et al. [2, 3, 4, 5, 6] investigated the stability of
the general cubic functional equation D3f(x, y) = 0 for any integer k 6∈ {−1, 0, 1}.
However, they could not prove the uniqueness of the exact solution because they
divided the related function into even and odd parts and proved their stability sep-
arately, while we prove in this paper the stability in an integrated way. At the same
time, we prove the uniqueness of the exact solution. This is an advantage of this
paper in comparison with the papers [2, 3, 4, 5, 6] of other mathematicians.

In this paper, we will prove the generalized Hyers-Ulam stability of the func-
tional equations Dmf(x, y) = 0 for m ∈ {1, 2, 3, 4, 5} and Dmf(x, y, z) = 0 for
m ∈ {6, 7}.

2. Main Results

The following theorem is a special version of Baker’s theorem when δ = 0 (refer
to [1]).

Theorem 2.1.([1, Theorem 1]) Given an m ∈ N, assume that V and W are vector
spaces over Q, R or C and that α0, β0, . . . , αm, βm are scalars satisfying αjβ` −
α`βj 6= 0 whenever 0 ≤ j < ` ≤ m. If the functions f` : V → W , ` ∈ {0, 1, . . . ,m},
satisfy the equation

m∑
`=0

f`(α`x+ β`y) = 0

for all x, y ∈ V , then each f` is a generalized polynomial mapping of degree at most
m− 1.

Baker [1] also states that if f : V → W is a generalized polynomial mapping

of degree at most m − 1, then f can be expressed as f(x) = x0 +
m−1∑̀
=1

a∗` (x) for

x ∈ V , where a∗` is a monomial mapping of degree ` and f has a property f(rx) =

x0 +
m−1∑̀
=1

r`a∗` (x) for x ∈ V and r ∈ Q. The monomial mapping of degree 1, 2

and 3 are called an additive mapping, a quadric mapping, and a cubic mapping,
respectively. The generalized polynomial mapping of degree 1, 2 and 3, on the other
hand, are called a Jensen mapping, a general quadric mapping, and a general cubic
mapping, respectively.

In summary, the following corollary can be obtained from Baker’s theorem.

Corollary 2.2. Let V and W be vector spaces over Q, R or C, and let r be a
rational number satisfying r 6∈ {−1, 0, 1}. Given an m ∈ N, assume that n1, . . . , nm

are positive integers and that c`,i, d`,i, α0, β0, . . . , αm, βm (` ∈ {1, . . . ,m} and i ∈
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{1, . . . , n`}) are scalars satisfying αjβ` − α`βj 6= 0 whenever 0 ≤ j < ` ≤ m. If a
mapping f : V → W satisfies the equation f(rx) = rkf(x) for all x ∈ V and the
equation

f(α0x+ β0y) +

m∑
`=1

n∑̀
i=1

c`,if(d`,i(α`x+ β`y)) = 0

for all x, y ∈ V , then f is a monomial mapping of degree k.

Proof. Put
f0(α0x+ β0y) = f(α0x+ β0y)

and

f`(α`x+ β`y) =

n∑̀
i=1

c`,if(d`,i(α`x+ β`y))

for all ` ∈ {1, . . . ,m}. Then f0, . . . , fm satisfy the conditions of Theorem 2.1. So
f is a generalized polynomial mapping of degree at most m− 1. In addition, since
f satisfies the equation f(rx) = rkf(x) for all x ∈ V , f is a monomial mapping of
degree k. 2

According to Theorem 2.1, the functional equations D1f(x, y) = 0, D2f(x, y) =
0, D4f(x, y) = 0, D5f(x, y) = 0, D6f(x, y, y) = 0, and D7f(x, y, y) = 0 are
cubic-quadratic-additive type functional equations, and the functional equation
D3f(x, y) = 0 is a general cubic type functional equation. Since D6f(x, y, y) =
0 and D7f(x, y, y) = 0 are cubic-quadratic-additive type functional equations,
D6f(x, y, z) = 0 and D7f(x, y, z) = 0 are cubic-quadratic-additive type functional
equations.

Hereafter, let Y be a real Banach space. For any mapping f : V → Y and any
function ϕ : V × V → [0,∞), we use the following notations:

fe(x) =
f(x) + f(−x)

2
,

fo(x) =
f(x)− f(−x)

2
,

ϕe(x, y) =
ϕ(x, y) + ϕ(−x,−y)

2
.

Lemma 2.3. Let V be a real vector space and let (Y, ‖ · ‖) be a real Banach space.
Given an m ∈ {1, 2, 3, 4, 5}, assume that a mapping f : V → Y satisfies f(0) = 0
and inequality

(2.1) ‖Dmf(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V . Then the following inequalities

(2.2)
‖fe(2x)− 4fe(x)‖ ≤ µm(x),

‖fo(4x)− 10fo(2x) + 16fo(x)‖ ≤ νm(x)
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hold for all x ∈ V , where µm, νm : V → R are defined by

µ1(x) :=
1

|4k3 − 4k|
×

×

(
|k − 2|

(
ϕe(x, 2x) + ϕe((k + 1)x, x) +

|k2 + k|
2ϕe(2x, x)

)
+ |k + 2|

(
ϕe(x,−2x) + ϕe((k − 1)x, x) +

|k2 − k|
2ϕe(−2x, x)

)
+ 4ϕe(kx, x) + |2k3 + k2 − k − 2|ϕe(−x, x)

+ |k3 − 4k2 − 3k + 2|ϕe(x, x)

)
,

µ2(x) :=
1

2
ϕe(0, x),

µ3(x) :=
1

k4 − k2
×

×
(
ϕe(kx, x) + k2ϕe(x, x) +

1

2
ϕe(0, 2x) + |k2 − 1|ϕe(0, x)

)
,

µ4(x) :=
1

4

(
ϕe(0, x) + ϕe(−x, x)

)
, µ5(x) :=

1

10

(
ϕe(−x, x) + 3ϕe(0, x)

)
,

ν1(x) :=
1

|k4 − k2||k + 2|
×

×
(

(k + 2)
(

2ϕe((k − 2)x, x) + 2ϕe((k + 2)x, x)

+ 2ϕe(2x, 2x)− 2ϕe(−2x, 2x)

− (k2 + k)ϕe(3x, x) + |k2 − k|ϕe(−3x, x)

+ 2|k2 − 1|ϕe(−2x, x)
)

+ 16ϕe(x, 2x) + 16ϕe(kx, x) + 16ϕe((k + 1)x, x)

+ 2|k3 − 2k2 − k − 6|ϕe(2x, x)

+ |k3 + 11k2 − 6k|ϕe(−x, x)

+ |k3 − 23k2 − 10k − 16|ϕe(x, x)

)
,

ν2(x) := ϕe(2x, x) + 2ϕe(x, x),

ν3(x) :=
1

|k4 − k2|
×

×
(
|4k2 − 3|ϕe(x, x) + 2k2ϕe(2x, x) + 2k2ϕe(x, 2x)

+ 2ϕe((k + 1)x, x) + 2ϕe((k − 1)x, x) + k2ϕe(2x, 2x)

+ ϕe(x, 3x) + ϕe((2k + 1)x, x) + ϕe((2k − 1)x, x)
)
,

ν4(x) := ϕe(x, x) + 5ϕe(0, x), ν5(x) := ϕe(2x, x) + 2ϕe(0, x).

(2.3)
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Proof. Some somewhat long and tedious calculations yield the following equalities:

fe(2x)− 22fe(x)

=
1

4k3 − 4k

(
(k − 2)

(
D1fe(x, 2x)−D1fe((k + 1)x, x)− k2 + k

2D1fe(2x, x)

)
− (k + 2)

(
D1fe(x,−2x)−D1fe((k − 1)x, x)− k2 − k

2D1fe(−2x, x)

)
− 4D1fe(kx, x) + (2k3 + k2 − k − 2)D1fe(−x, x)

+ (k3 − 4k2 − 3k + 2)D1fe(x, x)

)

= − D2fe(0, x)

2

=
D3fe(kx, x) + k2D3fe(x, x)− 1

2D3fe(0, 2x)− (k2 − 1)D3fe(0, x)

k4 − k2

=
D4fe(0, x) +D4fe(−x, x)

4

=
3D5fe(0, x)− 2D5fe(−x, x)

10
fo(4x)− 10fo(2x) + 16fo(x)

=
1

(k4 − k2)(k + 2)

(
(k + 2)

(
2D1fo((k − 2)x, x)− 2D1fo((k + 2)x, x)

+ 2D1fo(2x, 2x)− 2D1fo(−2x, 2x)

− (k2 + k)D1fo(3x, x) + (k2 − k)D1fo(−3x, x)

− 2(k2 − 1)D1fo(−2x, x)
)

+ 16D1fo(x, 2x) + 16D1fo(kx, x)− 16D1fo((k + 1)x, x)

+ 2(k3 − 2k2 − k − 6)D1fo(2x, x)

+ (k3 + 11k2 − 6k)D1fo(−x, x)

− (k3 − 23k2 − 10k − 16)D1fo(x, x)

)
= D2fo(2x, x) + 2D2fo(x, x)

=
1

k4 − k2

(
(4k2 − 3)D3fo(x, x)− 2k2D3fo(2x, x) + 2k2D3fo(x, 2x)

− 2D3fo((k + 1)x, x) + 2D3fo((k − 1)x, x)− k2D3fo(2x, 2x)

+D3fo(x, 3x)−D3fo((2k + 1)x, x) +D3fo((2k − 1)x, x)

)
= D4fo(x, x) + 5D4fo(0, x)
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and

fo(4x)− 10fo(2x) + 16fo(x) = D5fo(2x, x)− 2D5fo(0, x)

for all x ∈ V . Thus, we can easily obtain the inequalities in (2.2). 2

Recall that Y is a real Banach space.

Lemma 2.4. Given m ∈ {1, 2, 3, 4, 5}, assume that a mapping f : V → Y satisfies
f(0) = 0 and Dmf(x, y) = 0 for all x, y ∈ V . Then the equalities

(2.4) f1(2x) = 2f1(x), fe(2x) = 4fe(x), f3(2x) = 8f3(x)

are true for all x ∈ V , where

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2
,

f1(x) :=
8fo(x)− fo(2x)

6
, f3(x) := −2fo(x)− fo(2x)

6
.

Proof. According to inequalities of (2.2), we obtain the equalities

fe(2x)− 4fe(x) = 0 and fo(4x)− 10fo(2x) + 16fo(x) = 0

for all x ∈ V . We can easily derive equalities of (2.4) from the last equalities. 2

Using [11, Theorems 4.1–4.4] for the case of a = 2 and n = 2, we can prove the
following theorems.

Theorem 2.5. Let m ∈ {1, 2, 3, 4, 5} be fixed and let ϕ : V × V → [0,∞) be a
function satisfying the condition

(2.5)

∞∑
i=0

ϕ(2ix, 2iy)

2i
<∞

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.1) for
all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying

(2.6) DmF (x, y) = 0

for all x, y ∈ V and

(2.7) ‖f(x)− F (x)‖ ≤
∞∑
i=0

(
µm(2ix)

4i+1
+

(4i+1 − 1)νm(2ix)

6 · 8i+1

)
for all x ∈ V .
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Proof. On account of Lemma 2.3, the following inequalities

‖fe(2x)− 4fe(x)‖ ≤ µm(x) and ‖fo(4x)− 10fo(2x) + 16fo(x)‖ ≤ νm(x)

hold for all x ∈ V . Due to [11, Theorems 3.1], there exists a unique mapping
F : V → Y satisfying equality (2.6) for all x, y ∈ V , inequality (2.7) for all x ∈ V ,
and equalities of (2.4) for all x ∈ V . Since equalities of (2.4) can be derived from
(2.6), we conclude that there exists a unique mapping F : V → Y satisfying equality
(2.6) for all x, y ∈ V and inequality (2.7) for all x ∈ V . 2

Theorem 2.6. Let m ∈ {1, 2, 3, 4, 5} be fixed and let ϕ : V × V → [0,∞) be a
function satisfying the condition

(2.8)

∞∑
i=0

8iϕ

(
x

2i
,
y

2i

)
<∞

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.1) for
all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying equality (2.6)
for all x, y ∈ V and

(2.9) ‖f(x)− F (x)‖ ≤
∞∑
i=0

(
4iµm

(
x

2i+1

)
+

8i+1 − 2i+1

6
νm

(
x

2i+2

))
for all x ∈ V .

Proof. By Lemma 2.3, we obtain

‖fe(2x)− 4fe(x)‖ ≤ µm(x) and ‖fo(4x)− 10fo(2x) + 16fo(x)‖ ≤ νm(x)

for all x ∈ V . By [11, Theorems 3.2], there exists a unique mapping F : V → Y
satisfying equality (2.6) for all x, y ∈ V and inequality (2.9) for all x ∈ V . 2

Theorem 2.7. Let m ∈ {1, 2, 3, 4, 5} be fixed and let ϕ : V × V → [0,∞) be a
function satisfying the conditions

(2.10)

∞∑
i=0

ϕ(2ix, 2iy)

4i
<∞ and

∞∑
i=0

2iϕ

(
x

2i
,
y

2i

)
<∞

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.1) for
all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying equality (2.6)
for all x, y ∈ V and

(2.11) ‖f(x)− F (x)‖ ≤
∞∑
i=0

µm(2ix)

4i+1
+

1

6

∞∑
i=0

(
νm(2ix)

8i+1
+ 2iνm

(
x

2i+1

))
for all x ∈ V .
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Proof. Using Lemma 2.3, we have

‖fe(2x)− 4fe(x)‖ ≤ µm(x) and ‖fo(4x)− 10fo(2x) + 16fo(x)‖ ≤ νm(x)

for all x ∈ V . On account of [11, Theorems 3.3], there exists a unique mapping
F : V → Y satisfying equality (2.6) for all x, y ∈ V and inequality (2.11) for all
x ∈ V . 2

Recall that Y is a real Banach space.

Theorem 2.8. Let m ∈ {1, 2, 3, 4, 5} be fixed and let ϕ : V × V → [0,∞) be a
function satisfying the conditions

(2.12)

∞∑
i=0

ϕ(2ix, 2iy)

8i
<∞ and

∞∑
i=0

4iϕ

(
x

2i
,
y

2i

)
<∞

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.1) for
all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying equality (2.6)
for all x, y ∈ V as well as inequality

(2.13) ‖f(x)− F (x)‖ ≤
∞∑
i=0

(
4iµm

(
x

2i+1

)
+

1

6

(
νm(2ix)

8i+1
+ 2iνm

(
x

2i+1

)))
for all x ∈ V .

Proof. In view of Lemma 2.3, the following inequalities

‖fe(2x)− 4fe(x)‖ ≤ µm(x) and ‖fo(4x)− 10fo(2x) + 16fo(x)‖ ≤ νm(x)

hold for all x ∈ V . Due to [11, Theorems 3.4], there exists a unique mapping
F : V → Y satisfying equality (2.6) for any x, y ∈ V and inequality (2.11) for each
x ∈ V . 2

Lemma 2.9. Given an m ∈ {6, 7} and a function ϕ : V 3 → [0,∞), assume that a
mapping f : V → Y satisfies f(0) = 0 and

(2.14) ‖Dmf(x, y, z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ V . Then inequalities of (2.2) are true for all x ∈ V , where µm, νm :
V → R are defined by

(2.15)

µ6(x) :=
2ϕe(0, x, x)

2
,

ν6(x) := ϕe(2x, x, x) + 4ϕe(x, x, x),

µ7(x) := ϕe

(
x,
x

2
,
x

2

)
+ 2ϕe

(
x

2
,
x

2
,
x

2

)
,

ν7(x) := ϕe(2x, x, x) + 2ϕe(x, x, x)
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for all x ∈ V .

Proof. Since the equalities

fe(2x)− 22fe(x) =
D6fe(0, x, x)

2
= D7fe

(
x,
x

2
,
x

2

)
+ 2D7fe

(
x

2
,
x

2
,
x

2

)
and

fo(4x)− 10fo(2x) + 16fo(x) = D6fo(2x, x, x) + 4D6fo(x, x, x)

= D7fo(2x, x, x) + 2D7fo(x, x, x)

are true for any x ∈ V , we can easily obtain inequalities in (2.2). 2

Lemma 2.10. Given an m ∈ {6, 7} and a function ϕ : V 3 → [0,∞), assume that
a mapping f : V → Y satisfies f(0) = 0 and Dmf(x, y, z) = 0 for all x, y, z ∈ V .
Then equalities in (2.4) are true for all x ∈ V .

Proof. Due to inequalities of (2.2), we get

fe(2x)− 4fe(x) = 0 and fo(4x)− 10fo(2x) + 16fo(x) = 0

for any x ∈ V .
Hence, we can derive equalities of (2.4) from the above equalities. 2

By applying [11, Theorems 4.1–4.4] for the case of a = 2 and n = 3, we can
prove the following theorems.

Theorem 2.11. Let m ∈ {6, 7} be fixed and let ϕ : V 3 → [0,∞) be a function
satisfying the condition

∞∑
i=0

ϕ(2ix, 2iy, 2iz)

2i
<∞

for all x, y, z ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.14)
for all x, y, z ∈ V , then there exists a unique mapping F : V → Y satisfying

(2.16) DmF (x, y, z) = 0

for all x, y, z ∈ V as well as inequality (2.7) for all x ∈ V .

Again, Y is a real Banach space.

Theorem 2.12. Let m ∈ {6, 7} be fixed and let ϕ : V 3 → [0,∞) be a function
satisfying the condition

∞∑
i=0

8iϕ

(
x

2i
,
y

2i
,
z

2i

)
<∞

for all x, y, z ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.14)
for all x, y, z ∈ V , then there exists a unique mapping F : V → Y satisfying equality
(2.16) for all x, y, z ∈ V and inequality (2.9) for all x ∈ V .
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Theorem 2.13. Let m ∈ {6, 7} be fixed and let ϕ : V 3 → [0,∞) be a function
satisfying the conditions

∞∑
i=0

ϕ(2ix, 2iy, 2iz)

4i
<∞ and

∞∑
i=0

2iϕ

(
x

2i
,
y

2i
,
z

2i

)
<∞

for all x, y, z ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.14)
for all x, y, z ∈ V , then there exists a unique mapping F : V → Y satisfying equality
(2.16) for all x, y, z ∈ V and inequality (2.11) for all x ∈ V .

Theorem 2.14. Let m ∈ {6, 7} be fixed and let ϕ : V 3 → [0,∞) be a function
satisfying the conditions

∞∑
i=0

ϕ(2ix, 2iy, 2iz)

8i
<∞ and

∞∑
i=0

4iϕ

(
x

2i
,
y

2i
,
z

2i

)
<∞

for all x, y, z ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and inequality (2.14)
for all x, y, z ∈ V , then there exists a unique mapping F : V → Y satisfying equality
(2.16) for all x, y ∈ V and inequality (2.13) for all x ∈ V .

3. Discussion

Subjects similar to those covered in this paper have been studied previously (see
[3, 5, 6, 4, 2]). However, in these works, the proof of the uniqueness of the exact
solution was not possible, because the stability of the related functions was proved
separately for the even and odd parts. We feel that the uniqueness of the solution
is important, and that the division into even and odd parts is somewhat unnatural.

In this paper, we were able to prove the stability of the related function in an
integrated way, without dividing the related function into even and odd parts. This
allows us to prove the uniqueness of the exact solution. We see this a significant
improvement over the results of [3, 5, 6, 4, 2].

Because of space constraints, let us look at only one example that uses the
results of this paper. If we put m = 7, n = 2, c1 = 1, c2 = −1, c3 = −2, c4 = 2,
c5 = 6, c6 = 2, c7 = −2, a11 = 1, a12 = 2, a21 = 1, a22 = −2, a31 = 1, a32 = 1,
a41 = 1, a42 = −1, a51 = 0, a52 = 1, a61 = 0, a62 = −1, a71 = 0, a72 = 2
in (1.1) in [11], then the expression (1.1) in [11] becomes D2f(x, y) in this paper.
We have proved the (generalized) Hyers-Ulam stability of the functional equation
D2f(x, y) = 0 in Theorem 2.5 of this paper. If we set ϕ(x, y) = ε > 0, then it
follows from Theorem 2.5 that there exists a unique function F : V → Y satisfying
D2f(x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

(
µ2(2ix)

4i+1
+

(4i+1 − 1)ν2(2ix)

6 · 8i+1

)
=

25

42
ε

for all x ∈ V . In the text of Lemma 2.3, we can see the definitions of µ2 and ν2.
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