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ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL
EQUATIONS

JUNG RYE LEE?, SUN-YOUNG JANG »* AND DONG YUN SHIN ©**

ABSTRACT. In [17, 18], the fuzzy stability problems for the Cauchy additive func-
tional equation and the Jensen additive functional equation in fuzzy Banach spaces
have been investigated.

In this paper, we prove the generalized Hyers-Ulam stability of the following
quadratic functional equations in fuzzy Banach spaces:

(0.1) flz+y) + flz~y)=2f(z) + 2f(y),
(0.2) flaz + by) + faz — by) = 2a2f(:1:) + 2b2f(y)

for nonzero real numbers a, b with a # +1.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam
[35] concerning the stability of group homomorphisms. Hyers [11] gave a first affir-
mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [24] for lin-
ear mappings by considering an unbounded Cauchy difference. The paper of Th.M.
Rassias [24] has provided a lot of influence in the development of what we call gen-
eralized Hyers-Ulam stability of functional equations. A generalization of the Th.M.
Rassias theorem was obtained by Géavruta [10] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Th.M. Rassias’ approach.

A square norm on an inner product space satisfies the important parallelogram

equality
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Iz +yl? + llz = yI* = 2)jzI* + 2lly*.

The functional equation

flz+y)+ flz—y) =2f(z) + 2f ()

is called a gquadratic functional equation. In particular, every solution of the qua-
dratic functional equation is said to be a quadratic mapping. A generalized Hyers-
Ulam stability problem for the quadratic functional equation was proved by Skof
[34] for mappings f: X — Y, where X is a normed space and Y is a Banach space.
Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain X
is replaced by an Abelian group. In [6], Czerwik proved the generalized Hyers-Ulam
stability of the quadratic functional equation. During the last two decades a number
of papers and research monographs have been published on various generalizations
and applications of the generalized Hyers-Ulam stability to a number of functional
equations and mappings (see [13], [19]-[23], [26]-[33]).

Katrasas [14] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [8, 16, 36]. In particular, Bag and
Samanta [2], following Cheng and Mordeson [4], gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [15].
They established a decomposition theorem of a fuzzy norm into a family of crisp
norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 17, 18| to investigate
a fuzzy version of the generalized Hyers-Ulam stability for the quadratic functional
equations (0.1) and (0.2) in the fuzzy normed vector space setting.

Definition 1.1 ([2, 17, 18]). Let X be a real vector space. A function N : X xR —
[0,1] is called a fuzzy norm on X if for all z,y € X and all s,t € R,

(N1) N(z,t) =0fort <0;

(N2) z =0 if and only if N(z,t) =1 for all t > 0;

(N3) N(cz,t) = N(z, ]—é—[) if ¢ # 0;

(Ng) N(z+y,s+t) > min{N(z,s), Ny, t)};

(Ns) N(z,-) is a non-decreasing function of R and lim;—, N(z,t) = 1;

(Ne) for © # 0, N(z,) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are

given in (17, 18].
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Definition 1.2 ([2, 17, 18]). Let (X, N) be a fuzzy normed vector space. A sequence
{z,} in X is said to be convergent or converge if there exists an £ € X such that
lim, 0o N(zpn — z,t) = 1 for all ¢ > 0. In this case, = is called the limit of the

sequence {z,} and we denote it by N-lim, o zp, = .

Definition 1.3 ([2, 17, 18]). Let (X, N) be a fuzzy normed vector space. A sequence
{zn} in X is called Cauchy if for each ¢ > 0 and each ¢t > 0 there exists an ng € N
such that for all n > ng and all p > 0, we have N(Zn4p — Tn,t) > 1 — €.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X and
Y is continuous at a point zo € X if for each sequence {z,} converging to zp in X,
then the sequence {f(zn)} converges to f(zg). If f: X — Y is continuous at each
z € X, then f: X — Y is said to be continuous on X (see [3]).

This paper is organized as follows: In Section 2, we prove the generalized Hyers-
Ulam stability of the quadratic functional equation (0.1) in fuzzy Banach spaces. In
Section 3, we prove the generalized Hyers-Ulam stability of the quadratic functional
equation (0.2) in fuzzy Banach spaces. v

Throughout this paper, assume that X is a vector space and that (Y, N) is a

fuzzy Banach space. Let a, b be nonzero real numbers with a # +1.

2. GENERALIZED HYERS-ULAM STABILITY OF THE QUADRATIC
FUNCTIONAL EQUATION (0.1)

In this section, we prove the generalized Hyers-Ulam stability of the quadratic
functional equation (0.1) in fuzzy Banach spaces.
Theorem 2.1. Let ¢ : X% — [0,00) be a function such that

(2.1) F(z,y) ==Y _ 47"p(2"z,2"y) < o0

n=0

forallz,ye X. Let f: X — Y be a mapping with f(O) =0 such that
(2.2) Jim N(f(z +y) + f(z —y) - 2f(2) - 2f(y), tp(z,y)) = 1

uniformly on X x X. Then Q(z) := N-lim,_, ﬂz;‘_xz ezists for each x € X and
defines a quadratic mapping @ : X — Y such that if for some § > 0,a >0
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(2.3) N(f(z+y)+ flz—y) —2f(z) - 2f(y), 0p(z,y)) 2 @
forallz,y € X, then

N (1@ - @) @) 2 a

forallz e X.
Furthermore, the quadratic mapping @ : X — Y is a unique mapping such that
(2.4) Jim N(f(z) ~ Q(z), tp(z,2)) = 1

uniformly on X.

Proof. For a given € > 0, by (2.2), we can find some ¢y > 0 such that
(2.5) N(f(z+y)+ flz—y) - 2f(z) - 2f(y) to(z,y)) 2 1 —¢
for all t > tg. By induction on n, we show that

n—1
(2.6) N (4” f(z) - f(2":v),t24”“"'1(,0(2%,2’“:3)) >1-¢

k=0
forallt > tg,all z € X and alln € N.
Letting y = = in (2.5), we get

N4f(z) - f(2z), tp(z,z)) 2 1 —€
for all z € X and all t > ¢5. So we get (2.6) for n = 1.
Assume that (2.6) holds for n € N. Then

N <4"+1f(x) — f@"1),t " anFp(okg, 2’°:c)>
k=0
n—1
> min{N (4"+1f(x) —4f(2"x),to Z 4nk (2, Zkz)) ,
k=0
N(4f(2"z) - f(2"* @), top (2", 2":6))}
>min{l—¢g,1—¢€}=1-¢.

This completes the induction argument. Letting ¢ = ¢y and replacing n and = by p
and 2"z in (2.6), respectively, we get

n n p-1
(27) N (f(2 (L‘) _ f(2 +p$) to Z4p—k—l¢(2n+kx’2n+kx)> >1—¢

n n+p ' gn+p
4 4 4
k=0

for all integers n > 0,p > 0.
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It follows from (2.1) and the equality

p—1 1 e .
Z 4—n—k_1()0(2n+kx, 2n+km) = Z Z 4—k(p(2k$) 2km)
k=0 k=n

that for a given § > 0 there is an ng € N such that
¢ n-+p—1
-29- Z 47k p(2k, 2k2) < 6

k=n

for all n > ng and p > 0. Now we deduce from (2.7) that

v ({22 _ 1) 5)

4n 4ntp
gn DA B S
>N (f(4n37) _ f(4n+pm), 4n3_p 4P—k—1‘p(2n+kz, 2n+km)
k=0
>1—c¢

for all » > ng and all p > 0. Thus the sequence { ﬂi_:z_)} is Cauchy in Y. Since Y
is a fuzzy Banach space, the sequence {ﬂi:—zl} converges to some Q(z) € Y. So we
can define a mapping @ : X — Y by Q(z) := N-lim,_, f(i#l, namely, for each
t>0andzx € X, limn_.ooN(ﬂZ:—w) - Q(z),t) = 1.

Let z,y € X. Fix t > 0 and 0 < € < 1. Since lim,_,o 4 "p(2"z,2"y) = 0, there
is an n; > ng such that top(2"z, 2"y) < 4—:—1 for all n > n;. Hence for all n > ng, we

have

N(Q@ +1) +Qla —¥) ~ 2Q(2) - 2(3).1)
> min{V (Qe+u) - 4ns@a ), ),
N (Q(:r —y) —47"f(2"z - 2"y), é) :
N (20 - 47 21, 5 ) N (200) - 47 20, )
N (fere ) - 1@ - ) - 25 — 25, ) |

The first four terms on the right-hand side of the above inequality tend to 1 as
n — oo, and the fifth term is greater than

N(f(2*(z+y)) + f(2"(z — y)) - 2f(2"z) — 2 (2"y), tow(2 2, 2"Y)),
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which is greater than or equal to 1 — €. Thus
NQE+y) +Q(z-y)—2Q(z) -2Q(),t) 2 1-¢

for all t > 0. Since N(Q(z + y) + Q(z — y) — 2Q(z) — 2Q(y),t) = 1 for all t > 0, by

(N2), Qlz +y) + Q(x — y) — 2Q(z) — 2Q(y) = 0 for all z,y € X. Thus the mapping

Q: X —Y is quadratic, i.e., Q(z +y) + Q(z — y) = 2Q(z) + 2Q(y) for all z,y € X.
Now let for some positive § and «, (2.3) holds. Let

n—1
— Z 4—k—1(p(2n$’ 2”3/)
k=0

for all z,y € X. Let z € X. By the same reasoning as in the beginning of the proof,
one can deduce from (2.3) that

n—1
(2.8) N (4" flz) - f(2":z:),524”‘k"1¢(2kx,2kx)> >a

k=0

for all positive integers n. Let t > 0. We have

f(2"z)

U@ - Q@) Senlma)+8) 2 min{ (1)~ L2, 550(0,0))
(2.9) (“T%) Q()Q}

Combining (2.8) and (2.9) and the fact that lim, . N(ﬂi:—z) - Q(z),t) =1, we
observe that

N(f(z) - Q(z),dpn(z,2) +t) 2
for large enough n € N. Thanks to the continuity of the function N(f(z) — Q(z), "),
we see that N(f(z) — Q(z), %(,'E(x, z) +t) > a. Letting ¢ — 0, we conclude that

N (1) - Q). 37t 2)) 2

To end the proof, it remains to prove the uniqueness assertion. Let T be another
quadratic mapping satisfying (2.4). Fix ¢ > 0. Given ¢ > 0, by (2.4) for Q and T,

we can find some tg > 0 such that

N (1@ - Q)
N (1) - T(0)

o(z, )) > 1l-g,

DN o+ t\DlH-

Fam) 2 1
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for all z € X and all ¢t > 2ty. Fix some 2 € X and find some integer ng such that

o0
to Y 47 p(2%z, 2%a) < g

==

for all n > ng. Since

i4'kcp(2ka:,2kx) = 24 (k=n) o (25="(2"2), 25" (2"x))
k=n k“n
= 24 mo(2™(2"z), 2“(2”z))
m==0
- 41n 52"z, 2°z),

we have

N(Q(z) ~ T(z),¢)

Zmin{N( [(2") - Q(z), ) ( (z) - (2%):9}

= min{N(f(2"z) — Q(2"z),4" ' 2c), N(T(2"z) — f(2"z),4" 12¢c)}

> min {N < (2 z) — Q(2"z), 4 o 24—’%,0(2%, zkm)) ,

k=n

N (T(2"x) — f(2"z), 4™ i 47k p(2Fz, 2’°x)) }
k=mn
= min{N(f(2"z) — Q(2"z), toP(2"z,2"x)),
N(T(2"z) — f(2"z),t0p(2"z,2"z))}

>21l—e.

It follows that N(Q(z) — T(z),c) = 1 for all ¢ > 0. Thus Q(z) = T(z) for all
ze X, 0

Corollary 2.2. Let 8 > 0 and let p be a real number withO <p< 2. Let f: X - Y
be o mapping with f(0) = 0 such that

(2.10) lim N(f(@+y) + f(@ ~ y) - 2/() = 2/ ¥), (U= + i) = 1

uniformly on X x X. Then Q{z) := N limp oo ﬁ%;:ﬂ exists for each x € X and
defines a quadratic mapping @@ : X — Y such that if for some § > 0,a > 0

N(f(z+y) + f(z —y) - 2f(x) = 2f(y), 86(ll=|I” + ly*)) = e
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forallx,y € X, then

260
_ P
¥ (1) - Q). 22 0r) 2 a
forallz e X.
Furthermore, the quadratic mapping @ : X — Y is a unique mapping such that
8
. _ AP
Jim N (f(x) Q@), 5z ) 1

uniformly on X ..
Proof. Define ¢(z,y) := 0(||z|[’P+|ly(|?) and apply Theorem 2.1 to get the result. I
Similarly, we can obtain the following. We will omit the proof.

Theorem 2.3. Let p: X2 — [0,00) be a function such that
o0
~ Ty
(2.11) Plz,y) = 24"39 (2_"’ 2—n> < o0
n=1

forallz,y€ X. Let f : X — Y be a mapping satisfying (2.2) and f(0) = 0. Then
Q(z) := N-limp_ 4" f(5%) exists for each x € X and defines a quadratic mapping
Q: X — Y such that if for some § > 0,a > 0

N(f(z+y) + flz —y) - 2f(z) - 2f(y), 0p(z,¥)) =

forallz,y € X, then
N (1) - Q@) 37 2)) 2 @

forallz e X.
Furthermore, the gquadratic mapping @ : X — Y is a unique mapping such that

tlir&N(f(x) - Q(IL‘), t@(%x)) =1
uniformly on X.

Corollary 2.4. Let 8 > 0 and let p be a real number withp > 2. Let f 1 X — Y be
a mapping satisfying (2.10) and f(0) = 0. Then Q(z) := N-lim, .00 4" f(5%) exists
for each x € X and defines a quadratic mapping Q : X — Y such that if for some
6>0,a>90

N(f(z+y) + flz —y) - 2f(2) — 2f(y), 60 (ll=|I” + |ylI")) =

forall z,y € X, then
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266
- P
N (1) - Q@) ofol? ) 2
forallz e X.
Furthermore, the quadratic mapping Q@ : X — Y is a unique mapping such that
8
. _ p) =
lim N <f(fs) Qla), 55—l ) 1

uniformly on X.

Proof. Define ¢(z,y) := 8(||z]|?+ ||yl|") and apply Theorem 2.3 to get the result. O

3. GENERALIZED HYERS-ULAM STABILITY OF THE QUADRATIC
FuncTiONAL EQUATION (0.2)

In this section, we prove the generalized Hyers-Ulam stability of the quadratic
functional equation (0.2} in fuzzy Banach spaces.

Lemma 3.1. Let V and W be real vector spaces. If a mapping f : V — W satisfies
f(0) =0 and

(3.1) flaz + by) + f(az — by) = 2a%f(z) + 262 (y)
for all z,y € V, then the mapping f : V — W is quadratic, i.e.,

fl@+y) + fle—y) = 2f(2) +2f(y)
forallz,yeV.

Proof. Assume that f:V — W satisfies (3.1).
Letting y = 0 in (3.1), we get

2f(az) = 2a° f(z)

forallz e V.

Letting z = 0 in (3.1), we get
(3.2) f(by) + f(=by) = 26* (1)
for all y € V. Replacing y by —y in (3.2), we get
(33) F(=by) + F(by) = 26°1 ()

for all y € V. It follows from (3.2) and (3.3) that f(~y) = f(y) forall y € V. So
2f(by) = 26°f(y)
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for all y € V. Thus
(34) flaz +by) + flaz — by) = 2a*f(z) + 26*f (y) = 2f(az) + 2f (by)
for all z,y € V. Replacing az and by by z and w in (3.4), respectively, we get
f(z +w) + f(z - w) = 2f(2) + 2f (w)
for all z,w € V, as desired. ]

Theorem 3.2. Let ¢ : X2 — [0,00) be a function such that

(3.5) &(z,0) := Z a"p(a"z,0) < oo

n=0

forallz e X. Let f : X > Y be a mapping with f(0) =0 such that
(3.6) lim N(f(az +by) + f(az - by) - 2% f(z) — 26 f(y), to(z,y)) = 1

uniformly on X x X. Then Q(z) := N-limy,_e ﬁg;_xl exists for each z € X and
defines a quadratic mapping @ : X — Y such that if for some d > 0,a >0

(3.7  N(f(az +by) + faz — by) — 2a*f(z) - 26°f (y), 6p(,v)) =
forallz,y € X, then

N (10 - Q). 57@.0) 2 a

forallz e X.
Furthermore, the quadratic mapping @ : X — Y is a unique mapping such that
(3.8) Jim N(f(z) - Q(z),t4(x,0)) = 1

uniformly on X.
Proof. For a given € > 0, by (3.6), we can find some tg > 0 such that

(3.9) N(f(az +by) + f(az ~ by) — 2a°f(z) — 26°f (y), tep(z,y)) > 1 —¢

for all t > 2tg. By induction on n, we show that
n—1

(3.10) N (az”f(:c) - f(a™z), —;— Z a2”“2k‘2cp(ak$,0)) >1l-¢
k=0

forallt > 2tg,allz € X and alln € N.
Letting v = 0 in (3.9}, we get
N(2f(az) — 2a*f(z), tp(z,0)) > 1 — ¢
forall x € X and all t > 2tp. So we get (3.10) for n = 1.
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Assume that (3.10) holds for n € N. Then

N (a2”+2f(:8) _ f(an+1$)’ % §a2n—2kw(akx, 0))

n—1
> min {N (a%*’zf (z) - a’f(a"z),t0 Y a*" Fop(a"z, 0)) ,

k=0
N(a®f(a"z) - f(a"*'z), top(a"2,0))}

>min{l—-¢,1-¢}=1-¢.

This completes the induction argument. Letting t = to and replacing » and z by p
and a™z in (3.10), respectively, we get

(3 11) N (f(a :L') _ f(an-#pm) to za2p-2k -2 n+k 0)) > 1—¢

2n a2nt2p a2n+2p

for all integers n > 0,p > 0.
1t follows from (3.5) and the equality

-1 ‘ ntp—1
p s

—2n-2k-2_( ntk -2k
Za o(a" " x,0) = = Z a"%p(ake,0)
k=0 k=n

that for a given § > 0 there is an ng € N such that
n+p—1

t,
32 E a~%(akz,0) <

for all n > ng and p > 0. Now we deduce from (3.11) that

M(CER

a?n a2n+2p

fla"z) f(a™Pz) 2p—2k— 2 n+k
>N ( a2n - a2nt+2p a2n+2p Z I,O)

>1—¢

for each n > ng and all p > 0. Thus the sequence {%T%Z—)} is Cauchy in Y. Since
Y is a fuzzy Banach space, the sequence { i%’;%@-} converges to some Q(z) € Y. So
we can define a mapping @ : X — Y by Q(z) := N-limp-eo f-%‘i,’;“fl, namely, for each
t>0and z € X, limnoo N({52 — Q(z),1) = 1.

Let z,y € X. Fixt >0 and 0 < £ < 1. Since limp,_oc a™
an ny > ng such that tpp(a”z,0) < 9% for all n > nj. Hence for each n > ny, we

p(a™z,0) = 0, there is
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have
N(Q(az + by) + Q(az — by) — 2°Q(z) — 26*Q(y), 1)
> min {N (Q(ax +by) — o~ f(a" - az + a™by), é) \

N (Q(az ~by) - a"2"f(a" <ax - a"by), —;—) ,
N (2a2Q(z) —a™?" . 2¢%f(a"2), 3—) N <2b2Q(y) ~g . 2b2f(a”y)), i—) ,

N (f(an(ax + by)) - f(an(am — by)) — 2&2f(an-'13) - 262f(a'ny)) g?) } .

The first four terms on the right-hand side of the above inequality tend to 1 as

n — 00, and the fifth term is greater than
N(f(a"(az + by)) + f(a"(az — by)) - 24° f(a"z) — 26°f(a"y), top(a"z, 0)),
which is greater than or equal to 1 — ¢. Thus
N(Q(az + by) + Qlaz — by) — 2a°Q(z) - 26°Q(y),t) 2 1 — ¢
for all t > 0. Since N(Q(az + by) + Q(az — by) — 2a%Q(x) — 2b2Q(y),t) = 1 for all
t > 0, by (N2), Q(az + by) + Q(az — by) — 2a%Q(zx) — 2b2°Q(y) = 0 for all z,y € X.

By Lemma 3.1, the mapping () : X — Y is quadratic.
Now let for some positive § and «, (3.11) holds. Let

n—1
¢n(z,0) := Za'zk_ch(akz,ﬂ)
k=0

for all z € X. Let z € X. By the same reasoning as in the beginning of the proof,
one can deduce from (3.11) that

n-—1
(3.12) N (aznf(:c) ~ f(a"z), «52 a? =22 gk, 0)) >«

k=0
for all positive integers n. Let ¢t > 0. We have

M@ - Q@ a0+ 2 min{N (1)~ LG p0iz,0)
(3.13) | N (%‘”—) - Q(z),t) }

Combining (3.12) and (3.13) and the fact that lim,_ N(L(;-lzi,,QQ - Q(x),t) =1, we
observe that
N(f(z) — Q(z),0¢n(z,0) + ) 2 @
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for large enough n € N. Thanks to the continuity of the function N(f(z) - Q(z),),
we see that N(f(z) — Q(z), fg(ﬁ(x, 0) +t) > a. Letting t — 0, we conclude that

N (1) - Qo). 550 za

To end the proof, it remains to prove the uniqueness assertion. Let T be another
quadratic mapping satisfying (3.1) and (3.8). Fix ¢ > 0. Given ¢ > 0, by (3.8) for
2 and T, we can find some tg > 0 such that

N (1) - Q(a), £7(2,0))

v

1—e¢,

v

1—¢

N (f@) - (@) 53(0,0))

for all z € X and all ¢ > 2ty. Fix some z € X and find some integer ng such that
[o 4]
" 2k k ¢
Okz_%a pla®z,0) < 5

for all n > ng. Since

0 1 &
Z a—2k¢(akw’ 0) = aﬁ Z a—2(k—n)so(ak-—n(anw), 0)
k=n k=n

1 o _
= - E:Oa mo(a™(a ), 0)
m=

= —m¥(d"s,0),
we have
N(Q(z) — T(z),0)
> min {N (f(;’;a:) - Q(z), -;-) N <T(m) - i%r':;@'» %)}
= min{N(f(a"z) — Q(a"xz),a®>"22c), N(T(a"z) — f(a™z),a*"22¢)}

> min {N (f(a”:c) - Q(a"z), a®™t, i a"Fp(ake, 0)) ,

k=n

N (T(a”x) ~ f(a"z),a?"ty i a2 p(a*z, 0}) }

k=n

= min{N(f(a"2) - Q(a"2), to(a"z,0)),

N(T(a"z) - f(a"z),top(a"z,0))}
>1-c.
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It follows that N(Q(z) — T(z),c) = 1 for all ¢ > 0. Thus Q(z) = T(z) for all
z e X. O

Corollary 3.3. Let 6 > 0 and let p be a real number with 0 < p < 2 if |a] > 1 and
withp > 2 if la| < 1. Let f: X — Y be a mapping with f(0) = 0 such that

Jim N(f(az + by) + f(az — by) ~ 24° f(z) — 26 f (y), t6(llll” + [ly")) = 1

uniformly on X x X. Then Q(z) := N-limp_.00 ﬁf;;—zl exists for each z € X and
defines a quadratic mapping @ : X — Y such that if for some d > 0,a > 0

N(f(az +by) + f(az ~ by) — 24°f(z) — 26° f(y), 86(||z[IP + yIIP)) > «

forall z,y € X, then

N (f(w) ~ Q), —‘ff—x|m|lp) > a

a? — |a|P
forallz € X.

Furthermore, the quadratic mapping Q : X — Y is a unique mapping such that
2

tl_ig.gN (f(ac) - Q(x), ;%Wtﬁllwll”) =1

uniformly on X.

Proof. Define ¢(z,y) := 6(||z||P+|ly||P’) and apply Theorem 3.2 to get the result. O
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