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A FIXED POINT APPROACH TO THE STABILITY OF

ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS IN

MODULAR SPACES

ChangIl Kim* and Se Won Park**

Abstract. In this paper, we prove the generalized Hyers-Ulam
stability for the following additive-quadratic functional equation

f(2x + y) + f(2x− y) = f(x + y) + f(x− y) + 4f(x) + 2f(−x)

in modular spaces by using a fixed point theorem for modular
spaces.

1. Introduction and preliminaries

The question of stability for a generic functional equation was origi-
nated in 1940 by Ulam [9]. Concerning a group homomorphism, Ulam
posted the question asking how likely to an automorphism a function
should behave in order to guarantee the existence of an automorphism
near such functions. Hyers [3] gave the first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ theorem was generalized
by Aoki [1] for additive mappings and by Rassias [7] for linear mappings
by considering an unbounded Cauchy difference, the latter of which has
influenced many developments in the stability theory. This area is then
referred to as the generalized Hyers-Ulam stability. A generalization of
the Rassias’ theorem was obtained by Gǎvruta [2] by replasing the un-
bounded Cauchy difference by a general control function in the spirit of
Rassias’ approach.

A problem that mathematicians has dealt with is ”how to generalize
the classical function space Lp”. A first attempt was made by Birnhaum
and Orlicz in 1931. This generalization found many applications in
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differential and intergral equations with kernls of nonpower types. The
more abstract generalization was given by Nakano [6] in 1950 based on
replacing the particular integral form of the functional by an abstract one
that satisfies some good properties. This functional was called modular.
This idea was refined and generalized by Musielak and Orlicz [5] in 1959.

Recently, Sadeghi [8] presented a fixed point method to prove the gen-
eralized Hyers-Ulam stability of functional equations in modular spaces
with the 42-condition and K. Wongkum, P. Chaipunya, and P. Kumam
[10] proved the fixed point theorem and the generalized Hyers-Ulam
stability for quadratic mappings in a modular space whose modular is
convex, lower semi-continuous but do not satisfy the 42-condition.

In this paper, we prove the generalized Hyers-Ulam stability for the
following additive-quadratic functional equation

(1.1) f(2x+ y) + f(2x− y) = f(x+ y) + f(x− y) + 4f(x) + 2f(−x)

in modular spaces by using a fixed point theorem for modular spaces.

Definition 1.1. Let X be a vector space over a field K(R, C, or N).

(1) A generalized functional ρ : X −→ [0,∞] is called a modular if
(M1) ρ(x) = 0 if and only if x = 0 ,
(M2) ρ(αx) = ρ(x) for every scalar α with |α| = 1, and
(M3) ρ(z) ≤ ρ(x) + ρ(y) whenever z is a convex combination of x

and y.
(2) If (M3) is replaced by

(M4) ρ(αx+ βy) ≤ αρ(x) + βρ(y)
for all x, y ∈ V and for all nonnegative real numbers α, β with
α+ β = 1, then we say that ρ is convex.

The corresponding modular space, denoted by Xρ, is then defined

Xρ := {x ∈ X | ρ(λx)→ 0 as λ→ 0}.

Remark 1.2. If a modular ρ is convex, then one has ρ(x) ≤ δρ(1δx)
for all x ∈ Xρ and for all real number δ with o < δ ≤ 1.

Let Xρ be a modular space and let {xn} be a sequence in Xρ. Then (i)
{xn} is called ρ-convergent to a point x ∈ Xρ if ρ(xn−x)→ 0 as n→∞,
(ii) {xn} is called ρ-Cauchy if for any ε > 0, one has ρ(xn − xm) < ε for
sufficiently large m,n ∈ N, and (iii) a subset K of Xρ is called ρ-complete
if each ρ-Cauchy sequence is ρ-convergent.

Another unnatural behavior one usually encounter is that the conver-
gence of a sequence {xn} to x does not imply that {cxn} converges to cx
for some c ∈ K. Thus, many mathematicians imposed some additional
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conditions for a modular to meet in order to make the multiples of {xn}
converge naturally. Such preferences are referred to mostly under the
term related to the 42-conditions.

A modular space Xρ is said to satisfy the 42-condition if there exists
k ≥ 2 such that Xρ(2x) ≤ kXρ(x) for all x ∈ X. Some authors varied
the notion so that only k > 0 is required and called it the 42-type
condition. In fact, one may see that these two notions coincide. There
are still a number of equivalent notions related to the 42-conditions. In
[4], Khamsi proved a series of fixed point theorems in modular spaces
where the modulars do not satisfy42-conditions. His results exploit one
unifying hypothesis in which the boundedness of an orbit is assumed.

For a modular space Xρ, a nonempty subset C of Xρ, and a mapping
T : C −→ C, the orbit of T around a point x ∈ C is the set

O(x) := {x, Tx, T 2x, · · ·}.

The quantity δρ(x) := sup{ρ(u − v) | u, v ∈ O} is called the orbital
diameter of T at x and if δρ(x) <∞, then one says that T has a bounded
orbit at x.

Lemma 1.3. [4] Let Xρ be a modular space whose induced modular
is lower semi-continuous and let C ⊆ Xρ be a ρ-complete subset. If
T : C −→ C is a ρ-contraction, that is, there is a constant L ∈ [0, 1)
such that

ρ(Tx− Ty) ≤ Lρ(x− y), ∀x, y ∈ C
and T has a bounded orbit at a point x0 ∈ C, then the sequence {Tnx0}
is ρ-convergent to a point w ∈ C.

For any modular ρ on X and any linear space V , we define a set M

M := {g : V −→ Xρ | g(0) = 0}

and a generalized function ρ̃ on M by for each g ∈M,

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ cφ(x, x), ∀x ∈ V }.

K. Wongkum, P. Chaipunya, and P. Kumam proved the following
lemma:

Lemma 1.4. [10] Let V be a linear space, Xρ a ρ-complete modular
space where ρ is lower semi-continuous and convex, and f : V −→ Xρ a
mapping with f(0) = 0. Let φ : V 2 −→ [0,∞) be a mapping such that

lim
n−→∞

φ(2nx, 2ny)

4n
= 0, φ(2x, 2y) ≤ 2Lφ(x, y)
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for all x, y ∈ X. Then (i) M is a linear space, (ii) ρ̃ is a convex modular
on M, (iii) Mρ̃ = M, (iv) Mρ̃ is ρ̃-complete, and (v) ρ̃ is lower semi-
continuous.

2. The generalized Hyers-Ulam stability for (1.1) in modular
spaces

Throughout this section, we assume that every modular is lower semi-
continuous and convex. In this section, we prove the generalized Hyers-
Ulam stability for (1.1). We start with the following theorem.

For any f : X −→ Y , let

fo(x) =
1

2
(f(x)− f(−x)), fe(x) =

1

2
(f(x) + f(−x)).

Theorem 2.1. A mapping f : X −→ Y satisfies (1.1) if and only if
f is an additive-quadratic mapping.

Proof. Suppose that f : X −→ Y satisfies (1.1). By (1.1), we have

fe(2x+ y) + fe(2x− y) = fe(x+ y) + fe(x− y) + 6fe(x)

for all x, y ∈ X and clearly, fe is a quadratic mapping. By (1.1), we
have

(2.1) fo(2x+ y) + fo(2x− y) = fo(x+ y) + fo(x− y) + 2fo(x)

for all x, y ∈ X. Replacing y by x+ y in (2.1), we get

(2.2) fo(3x+ y) + fo(x− y) = fo(2x+ y)− fo(y) + 2fo(x)

for all x, y ∈ X and replacing y by −y in (2.2), we get

(2.3) fo(3x− y) + fo(x+ y) = fo(2x− y) + fo(y) + 2fo(x)

for all x, y ∈ X. By (2.1), (2.2), and (2.3), we obtain

(2.4) fo(3x+ y) + fo(3x− y) = 6fo(x)

for all x, y ∈ X and letting y = 0 in (2.4), we obtain

(2.5) fo(3x) = 3fo(x)

for all x ∈ X. By (2.4) and (2.5), we have

fo(x+ y) + fo(x− y) = 2fo(x)

for all x ∈ X and hence fo is an additive mapping. Thus f is an additive-
quadratic mapping. The converse is trivial.
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Theorem 2.2. Let V be a linear space, Xρ a ρ-complete modular
space and f : V −→ Xρ a mapping with f(0) = 0. Let φ : V 2 −→ [0,∞)
be a mapping such that

(2.6) φ(2x, 2y) ≤ 2Lφ(x, y)

for all x, y ∈ V and some L with 0 ≤ L < 1 and
(2.7)
ρ(f(2x+y)+f(2x−y)−f(x+y)−f(x−y)−4f(x)−2f(−x)) ≤ φ(x, y)

for all x, y ∈ V . Then there exists a unique additive-quadratic mapping
F : V −→ Xρ such that

(2.8) ρ(F (x)− 1

2
f(x)) ≤ 3− 2L

8(1− L)(2− L)
ψ(x, 0)

for all x ∈ V , where ψ(x, y) = 1
2(φ(x, y) + φ(−x,−y)).

Proof. Define a map ρ̃ on M = {g : V −→ Xρ | g(0) = 0} by

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ cψ(x, o), ∀x ∈ V }

for each g ∈M. Similar to the proof of Lemma 1.4, we can show that ρ̃
satisfies (ii), (iii), (iv), and (v) in Lemma 1.4.

Define To : Mρ̃ −→ Mρ̃ by Tog(x) = 1
2g(2x) for all g ∈ Mρ̃ and all

x ∈ V . Let g, h ∈Mρ̃. Suppose that ρ̃(g− h) ≤ c for some non-negative
real number c. Then by Remark 1.2, we have

ρ(Tog(x)− Toh(x)) ≤ 1

2
ρ(g(2x)− h(2x)) ≤ Lcψ(x, 0)

for all x ∈ V and so ρ̃(Tog − Toh) ≤ Lρ̃(g − h). Hence To is a ρ̃-
contraction.

Now, we claim that To has a bounded orbit at 1
2fo. Since fo is an

odd mapping and ρ is convex, (2.7) implies that

(2.9) ρ(fo(2x+y)+fo(2x−y)−fo(x+y)−fo(x−y)−2fo(x)) ≤ ψ(x, y)

for all x, y ∈ V . Letting y = 0 in (2.9), we get

ρ(2fo(2x)− 4fo(x)) ≤ ψ(x, 0)

for all x ∈ V and so

ρ(
1

2
fo(2x)− fo(x)) ≤ 1

22
ψ(x, 0)

for all x ∈ V . For any non-negative integer n, we obtain
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ρ(
1

2n
fo(2

nx)− fo(x))

= ρ(
1

2
[

1

2n−1
fo(2

n−1(2x))− fo(2x)] +
1

2
[fo(2x)− 2fo(x)])

≤ 1

2
ρ(

1

2n−1
fo(2

n−1(2x))− fo(2x)) +
1

2
ρ(fo(2x)− 2fo(x))

≤ 1

2
ρ(

1

2n−1
fo(2

n−1(2x))− fo(2x)) +
1

22
ψ(x, 0)

for all x ∈ V and by induction, we have

(2.10) ρ(
1

2n
fo(2

nx)− fo(x)) ≤
n−1∑
i=0

1

2i+2
ψ(2ix, 0)

for all x ∈ V and for all non-negative integer n. Hence for any n,m ∈ N,
by (2.10), we get

ρ(
1

2n+1
fo(2

nx)− 1

2m+1
fo(2

mx))

≤ 1

2
ρ(

1

2n
fo(2

nx)− fo(x)) +
1

2
ρ(

1

2m
fo(2

mx)− fo(x))

≤
n−1∑
i=0

1

2i+3
ψ(2ix, 0) +

m−1∑
i=0

1

2i+3
ψ(2ix, 0) ≤ 1

4(1− L)
ψ(x, 0)

for all x ∈ V and thus

ρ̃(Tno
1

2
fo − Tmo

1

2
fo) ≤

1

4(1− L)

for all x ∈ V . Hence To has a bounded orbit at 1
2fo. By Lemma 1.3,

there is an A ∈Mρ̃ such that {Tno 1
2fo} ρ̃-converges to A. Since ρ̃ is lower

semi-continuous, we get

ρ̃(ToA−A) ≤ lim inf
n−→∞

ρ̃(ToA− Tn+1
o

1

2
fo) ≤ lim inf

n−→∞
Lρ̃(A− Tno

1

2
fo) = 0

and hence A is a fixed point of To in Mρ̃. Replacing x and y by 2nx and
2ny in (2.9), respectively, we have

ρ(
1

2n+1
[fo(2

n(2x+ y)) + fo(2
n(2x− y))− fo(2n(x+ y))

− fo(2n(x− y))− 2fo(2
nx)]) ≤ 1

2n+1
ψ(2nx, 2ny) ≤ Ln

2
ψ(x, y)

(2.11)

for all x, y ∈ V . Since ρ is lower semi-continuous, by (2.11), we get

(2.12) A(2x+ y) +A(2x− y)−A(x+ y)−A(x− y)− 2A(x) = 0
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for all x, y ∈ V . Since ρ is lower semi-continuous, by (2.10), we get

ρ(2A(x)− fo(x)) ≤ 1

4(1− L)
ψ(x, 0)

for all x ∈ X and so we have

(2.13) ρ̃(2A− fo) ≤
1

4(1− L)
.

Define Te : Mρ̃ −→ Mρ̃ by Teg(x) = 1
4g(2x) for all g ∈ Mρ̃ and all

x ∈ V . Let g, h ∈Mρ̃. Suppose that ρ̃(g− h) ≤ c for some non-negative
real number c. Then we have

ρ(Teg(x)− Teh(x)) ≤ 1

4
ρ(g(2x)− h(2x)) ≤ L

2
cψ(x, 0)

for all x ∈ V and so ρ̃(Teg−Teh) ≤ L
2 ρ̃(g−h). Thus Te is a ρ̃-contraction.

Now, we claim that Te has a bounded orbit at 1
2fe. Since fe is an

even mapping and ρ is convex, (2.7) implies that

(2.14) ρ(fe(2x+y)+fe(2x−y)−fe(x+y)−fe(x−y)−6fe(x)) ≤ ψ(x, y)

for all x, y ∈ V . Letting y = 0 in (2.14), we get

ρ(2fe(2x)− 8fe(x)) ≤ ψ(x, 0)

for all x ∈ V and so

ρ(
1

4
fe(2x)− fe(x)) ≤ 1

2 · 4
ψ(x, 0)

for all x ∈ V . For any non-negative integer n, we obtain

ρ(
1

4n
fe(2

nx)− fe(x))

= ρ(
1

2
[

1

2 · 4n−1
fe(2

n−1(2x))− 1

2
fe(2x)] +

1

2
[
1

2
fe(2x)− 2fe(x)])

≤ 1

4
ρ(

1

4n−1
fe(2

n−1(2x))− fe(2x)) +
1

4
ρ(fe(2x)− 4fe(x))

≤ 1

4
ρ(

1

4n−1
fe(2

n−1(2x))− fe(2x)) +
1

2 · 4
ψ(x, 0)

for all x ∈ V and by induction, we have

(2.15) ρ(
1

4n
fe(2

nx)− fe(x)) ≤
n−1∑
i=0

1

2 · 4i+1
ψ(2ix, 0)
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for all x ∈ V and for all non-negative integer n. Hence for any n,m ∈ N,
by (2.15), we get

ρ(
1

4n
· 1

2
fe(2

nx)− 1

4m
· 1

2
fe(2

mx))

≤ 1

2
ρ(

1

4n
fe(2

nx)− fe(x)) +
1

2
ρ(

1

4m
fe(2

mx)− fe(x))

≤
n−1∑
i=0

1

4i+2
ψ(2ix, 0) +

m−1∑
i=0

1

4i+2
ψ(2ix, 0) ≤ 1

4(2− L)
ψ(x, 0)

for all x ∈ V and thus

ρ̃(Tne
1

2
fe − Tme

1

2
fe) ≤

1

4(2− L)

for all x ∈ V . Hence Te has a bounded orbit at 1
2fe. By Lemma 1.3,

there is a Q ∈Mρ̃ such that {Tne 1
2fe} ρ̃-converges to Q. Since ρ̃ is lower

semi-continuous, we get

ρ̃(TeQ−Q) ≤ lim inf
n−→∞

ρ̃(TeQ− Tn+1
e

1

2
fe) ≤ lim inf

n−→∞

L

2
ρ̃(Q− Tne

1

2
fe) = 0

and hence Q is a fixed point of Te in Mρ̃. Replacing x and y by 2nx and
2ny in (2.14), respectively, we have

ρ(
1

2 · 4n
[fe(2

n(2x+ y)) + fe(2
n(2x− y))− fe(2n(x+ y))

− fe(2n(x− y))− 6fe(2
nx)]) ≤ 1

2 · 4n
ψ(2nx, 2ny) ≤ Ln

2n+1
ψ(x, y)

(2.16)

for all x, y ∈ V . Since ρ is lower semi-continuous, by (2.16), we get

(2.17) Q(2x+ y) +Q(2x− y)−Q(x+ y)−Q(x− y)− 6Q(x) = 0

for all x, y ∈ V . Since ρ is lower semi-continuous, by (2.15), we get

ρ(2Q(x)− fe(x)) ≤ 1

4(2− L)
φ(x, 0)

for all x ∈ X and so we have

(2.18) ρ̃(2Q− fe) ≤
1

4(2− L)
.

Let F = A + Q. Then clearly A is odd and Q is even and by (2.12)
and (2.17), F is a solution of (1.1). By Theorem 2.1, F is an additive-
quadratic mapping. Moreover, by (2.13) and (2.18), we have

ρ̃(F − 1

2
f) ≤ 1

2
ρ̃(2A− fo) +

1

2
ρ̃(2Q− fe)
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and hence we have (2.8).

To prove the uniquness of F , let G : V −→ Xρ be another additive-
quadratic mapping with (2.8). By (2.8), we get

ρ(
1

2
G(x)− 1

2
F (x)) ≤ 1

2
ρ(G(x)− 1

2
f(x)) +

1

2
ρ(F (x)− 1

2
f(x)))

≤ 3− 2L

8(1− L)(2− L)
ψ(x, 0)

for all x ∈ V and so

ρ(
1

2
Go(x)− 1

2
Fo(x)) ≤ 1

2
ρ(

1

2
G(x)− 1

2
F (x)) +

1

2
ρ(

1

2
G(−x)− 1

2
F (−x)))

≤ 3− 2L

8(1− L)(2− L)
ψ(x, 0)

for all x ∈ V . Since Fo and Go are fixed points of To, we have

ρ(
1

2
Go(x)− 1

2
Fo(x)) ≤ ρ(

1

2
TnGo(x)− 1

2
TnFo(x))

≤ 3− 2L

8(1− L)(2− L)
Lnψ(x, 0)

for all x ∈ V and for all n ∈ N. Hence Fo = Go and similarly, we have
Fe = Ge. Thus F = G.

Using Theorem 2.2, we conclude the following classical generalized
Hyers-Ulam stability in normed spaces.

Corollary 2.3. Let V be a linear space, (X, ‖ · ‖) a Banach space
and f : V −→ X a mapping with f(0) = 0. Suppose that the following
inequality

‖f(2x+ y) + f(2x− y)− f(x+ y)− f(x− y)− 4f(x)− f(−x)‖
≤ ‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p

holds for all x, y ∈ V and for some real number p with 0 < p < 1
2 . Then

there is a unique additive-quadratic mapping F : V −→ X such that

‖F (x)− f(x)‖ ≤ 3− 22p

2(2− 22p)(4− 22p)
‖x‖2p

for all x ∈ X.
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[2] P. Gǎvruta, A generalization of the Hyer-Ulam-Rassias stability of approxi-
mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad.
Sci. 27 (1941), 222-224.

[4] M. A. Khamsi, Quasicontraction mappings in modular spaces without 2-
condition, Fixed Point Theory and Applications 2008 (2008), 1-6.

[5] J. Musielak and W. Orlicz, On modular spaces, Studia Mathematica 18 (1959),
591-597.

[6] H. Nakano, Modular semi-ordered spaces, Tokyo, Japan, 1959.
[7] Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc.

Amer. Math. Sco. 72 (1978), 297-300.
[8] G. Sadeghi, A fixed point approach to stability of functional equations in mod-

ular spaces, Bulletin of the Malaysian Mathematical Sciences Society, Second
Series, 37 (2014), 333-344.

[9] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
[10] K. Wongkum, P. Chaipunya, and P. Kumam, On the generalized Ulam-

Hyers-Rassias stability of quadratic mappings in modular spaces without 42-
conditions, 2015 (2015), 1-6.

*
Department of Mathematics Education
Dankook University
Yongin 448-701, Republic of Korea
E-mail : kci206@hanmail.net

**
Department of Liberal arts and Science
Shingyeong University
Hwaseong 445-741, Republic of Korea
E-mail : sewpark1079@naver.com


