1 |
Th.M. Rassias: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251 (2000), 264-284.
DOI
ScienceOn
|
2 |
C. Park: On an approximate automorphism on a C*-algebra. Proc. Amer. Math. Soc. 132 (2004), 1739-1745.
DOI
ScienceOn
|
3 |
C. Park: Modified Trif's functional equations in Banach modules over a C*-algebra and approximate algebra homomorphisms. J. Math. Anal. Appl. 278 (2003), 93-108.
DOI
ScienceOn
|
4 |
A.K. Mirmostafaee & M.S. Moslehian: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets and Systems 159 (2008), 720-729.
DOI
ScienceOn
|
5 |
S. Jung: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press lnc., Palm Harbor, Florida, 2001.
|
6 |
C. Park: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl. 275 (2002), 711-720.
DOI
ScienceOn
|
7 |
A.K. Mirmostafaee, M. Mirzavaziri & M.S. Moslehian: Fuzzy stability of the Jensen functional equation. Fussy Sets and Systems 159 (2008), 730-738.
DOI
ScienceOn
|
8 |
A.K. Katsaras: Fuzzy topological vector spaces II . Fuzzy Sets and Systems 12 (1984), 143-154.
DOI
ScienceOn
|
9 |
I. Kramosil & J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetica 11 (1975), 326-334.
|
10 |
S.V. Krishna & K.K.M. Sarma: Separation of fuzzy normed linear spaces. Fuzzy Sets and Systems 63 (1994), 207-217.
DOI
ScienceOn
|
11 |
Z. Gajda: On stability of additive mappings. Internat. J. Math. Math. Sci. 14 (1991), 431-434.
DOI
ScienceOn
|
12 |
D.H. Hyers, G. Isac & Th.M. Rassias: Stability of Functional Equations in Several Variables. Birkhauser, Basel, 1998.
|
13 |
J.Z. Xiao & X.H. Zhu: Fuzzy normed spaces of operators and its completeness. Fuzzy Sets and Systems 133 (2003), 389-399.
DOI
ScienceOn
|
14 |
P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
DOI
ScienceOn
|
15 |
D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
DOI
ScienceOn
|
16 |
Th.M. Rassias & P. Semrl: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Amer. Math. Soc. 114 (1992), 989-993.
DOI
ScienceOn
|
17 |
Th.M. Rassias & P. Semrl: On the Hyers-Ulam stability of linear mappings. J. Math. Anal. Appl. 173 (1993), 325-338.
|
18 |
Th.M. Rassias & K. Shibata: Variational problem of some quadratic functionals in complex analysis. J. Math. Anal. Appl. 228 (1998), 234-253.
DOI
ScienceOn
|
19 |
F. Skof: Proprieta locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
DOI
|
20 |
C. Felbin: Finite dimensional fuzzy normed linear spaces. Fuzzy Sets and Systems 48 (1992), 239-248.
DOI
ScienceOn
|
21 |
T. Bag & S.K. Samanta: Fuzzy bounded linear operators. Fuzzy Sets and Systems 151 (2005), 513-547.
DOI
ScienceOn
|
22 |
S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960
|
23 |
Th.M. Rassias: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62 (2000), 23-130.
DOI
ScienceOn
|
24 |
P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
DOI
|
25 |
S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64
DOI
|
26 |
S. Czerwik: Functional Equations and Inequalities in Several Variables. World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
|
27 |
Th.M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
|
28 |
Th.M. Rassias: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 246 (2000), 352-378.
DOI
ScienceOn
|
29 |
Th.M. Rassias: On the stability of the quadratic functional equation and its applications. Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
|
30 |
T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
DOI
|
31 |
C. Park: Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras. J. Math. Anal. Appl. 293 (2004), 419-434.
DOI
ScienceOn
|
32 |
Th.M. Rassias: New characterizations of inner product spaces. Bull. Sci. Math. 108 (1984), 95-99.
|
33 |
S.C. Cheng & J.M. Mordeson: Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 86 (1994), 429-436.
|
34 |
T. Bag & S.K. Samanta: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11 (2003), 687-705.
|
35 |
C. Park: Homomorphisms between Poisson C*-algebras. Bull. Braz. Math. Soc. 36 (2005), 79-97.
DOI
ScienceOn
|
36 |
Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
DOI
ScienceOn
|