• 제목/요약/키워드: generalized operator

검색결과 299건 처리시간 0.029초

REMARKS CONCERNING SOME GENERALIZED CESÀRO OPERATORS ON ℓ2

  • Rhaly, Henry Crawford Jr.
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.425-434
    • /
    • 2010
  • Here we see that the $p-Ces{\grave{a}}ro$ operators, the generalized $Ces{\grave{a}}ro$ operators of order one, the discrete generalized $Ces{\grave{a}}ro$ operators, and their adjoints are all posinormal operators on ${\ell}^2$, but many of these operators are not dominant, not normaloid, and not spectraloid. The question of dominance for $C_k$, the generalized $Ces{\grave{a}}ro$ operators of order one, remains unsettled when ${\frac{1}{2}}{\leq}k<1$, and that points to some general questions regarding terraced matrices. Sufficient conditions are given for a terraced matrix to be normaloid. Necessary conditions are given for terraced matrices to be dominant, spectraloid, and normaloid. A very brief new proof is given of the well-known result that $C_k$ is hyponormal when $k{\geq}1$.

ON DIFFERENTIABILITY OF THE MATRIX TRACE OPERATOR AND ITS APPLICATIONS

  • Dulov, E.V.;Andrianova, N.A.
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.97-109
    • /
    • 2001
  • This article is devoted to “forgotten” and rarely used technique of matrix analysis, introduced in 60-70th and enhanced by authors. We will study the matrix trace operator and it’s differentiability. This idea generalizes the notion of scalar derivative for matrix computations. The list of the most common derivatives is given at the end of the article. Additionally we point out a close connection of this technique with a least square problem in it’s classical and generalized case.

STRONG DIFFERENTIAL SUBORDINATION AND SUPERORDINATION OF NEW GENERALIZED DERIVATIVE OPERATOR

  • OSHAH, ANESSA;DARUS, MASLINA
    • Korean Journal of Mathematics
    • /
    • 제23권4호
    • /
    • pp.503-519
    • /
    • 2015
  • In this work, certain classes of admissible functions are considered. Some strong dierential subordination and superordination properties of analytic functions associated with new generalized derivative operator $B^{{\mu},q,s}_{{\lambda}_1,{\lambda}_2,{\ell},d}$ are investigated. New strong dierential sandwich-type results associated with the generalized derivative operator are also given.

A NOTE ON THE GENERALIZED VARIATIONAL INEQUALITY WITH OPERATOR SOLUTIONS

  • Kum, Sangho
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.319-324
    • /
    • 2009
  • In a series of papers [3, 4, 5], the author developed the generalized vector variational inequality with operator solutions (in short, GOVVI) by exploiting variational inequalities with operator solutions (in short, OVVI) due to Domokos and $Kolumb\acute{a}n$ [2]. In this note, we give an extension of the previous work [4] in the setting of Hausdorff locally convex spaces. To be more specific, we present an existence of solutions of (GVVI) under the weak pseudomonotonicity introduced in Yu and Yao [7] within the framework of (GOVVI).

  • PDF

DECOMPOSITION FORMULAS FOR THE GENERALIZID HYPERGEOMETRIC 4F3 FUNCTION

  • Hasanov, Anvar;Turaev, Mamasali;Choi, June-Sang
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.1-16
    • /
    • 2010
  • By using the generalized operator method given by Burchnall and Chaundy in 1940, the authors present one-dimensional inverse pairs of symbolic operators. Many operator identities involving these pairs of symbolic operators are rst constructed. By means of these operator identities, 11 decomposition formulas for the generalized hypergeometric $_4F_3$ function are then given. Furthermore, the integral representations associated with generalized hypergeometric functions are also presented.

SOME GENERALIZED HIGHER SCHWARZIAN OPERATORS

  • Kim, Seong-A
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권1호
    • /
    • pp.147-154
    • /
    • 2009
  • Tamanoi proposed higher Schwarzian operators which include the classical Schwarzian derivative as the first nontrivial operator. In view of the relations between the classical Schwarzian derivative and the analogous differential operator defined in terms of Peschl's differential operators, we define the generating function of our generalized higher operators in terms of Peschl's differential operators and obtain recursion formulas for them. Our generalized higher operators include the analogous differential operator to the classical Schwarzian derivative. A special case of our generalized higher Schwarzian operators turns out to be the Tamanoi's operators as expected.

  • PDF

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • 충청수학회지
    • /
    • 제25권4호
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

GENERALIZED KILLING STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS

  • Lee, Hyunjin;Suh, Young Jin;Woo, Changhwa
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.255-278
    • /
    • 2022
  • In this paper, first we introduce a new notion of generalized Killing structure Jacobi operator for a real hypersurface M in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um). Next we prove that there does not exist a Hopf real hypersurface in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um) with generalized Killing structure Jacobi operator.

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

  • Chang, Seung Jun;Lee, Il Yong
    • 충청수학회지
    • /
    • 제23권1호
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form $$F(x)=f\({\int}^T_0{\alpha}_1(t)dx(t),{\cdots},{\int}_0^T{\alpha}_n(t)dx(t)\)$$, where x is a continuous function on [0, T] and {${\alpha}_1,{\cdots},{\alpha}_n$} is an orthonormal set of functions from ($L^2_{a,b}[0,T]$, ${\parallel}{\cdot}{\parallel}_{a,b}$).