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GENERALIZED KILLING STRUCTURE JACOBI OPERATOR

FOR REAL HYPERSURFACES IN COMPLEX HYPERBOLIC

TWO-PLANE GRASSMANNIANS

Hyunjin Lee, Young Jin Suh, and Changhwa Woo

Abstract. In this paper, first we introduce a new notion of general-
ized Killing structure Jacobi operator for a real hypersurface M in com-

plex hyperbolic two-plane Grassmannians SU2,m/S (U2 · Um). Next we

prove that there does not exist a Hopf real hypersurface in complex hy-
perbolic two-plane Grassmannians SU2,m/S (U2 · Um) with generalized

Killing structure Jacobi operator.

1. Introduction

In 20th century, classifications with certain geometric problems for real hy-
persurfaces in complex space form or quaternionic space form were main re-
search subjects in the field of differential geometry (see [19, 20, 22]). Recently,
many kinds of geometric problems have been considered for the classification
of real hypersurfaces in the complex two-plane Grassmannians G2(Cm+2) =
SUm+2/S(U2 ·Um) or complex hyperbolic two-plane Grassmannians G∗2(Cm+2)
= SU2,m/S(U2 ·Um) (see [3,4,7,12,23,28–30]). Indeed, the complex space form
and the complex (hyperbolic) two-plane Grassmannians mentioned above can
be regarded as typical examples of Hermitian symmetric spaces.

In general, a Hermitian symmetric space M̄ is defined by a connected com-
plex manifold with a Hermitian structure. Each point p ∈ M̄ is an isolated fixed
point of an involutive holomorphic isometry sp of M̄ . A Hermitian symmetric
space M̄ is a Riemannian symmetric space of even dimension (for more detail,
see [11]). By using this property, the classification problem of real hypersurfaces
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with shape operator in Hermitian symmetric spaces have been investigated by
Berndt and Suh [3–5,7], Martinez and Pérez [19], Pérez [21], Suh [26,27].

Certain parallelism on the other symmetric operators like Ricci operator,
structure Jacobi and normal Jacobi operators for real hypersurfaces in Hermit-
ian symmetric spaces are extensively studied. Among them, the study of Ricci
operator were considered by Lee, Suh and Woo [15], Pérez and Suh [23], Pérez,
Suh and Watanabe [24], Suh [28–30], Suh and Woo [31]. Moreover, the struc-
ture Jacobi and normal Jacobi operators for real hypersurfaces in Hermitian
symmetric spaces have been undertaken by Lee, Suh and Woo [12,16,17].

Based on these results, in this paper, we will consider a new notion of gen-
eralized Killing structure Jacobi operator for real hypersurfaces in complex
hyperbolic two-plane Grassmannians SU2,m/S(U2 · Um). In order to do this,
we first define the Killing vector field (often called a Killing field) as follows.

Definition 1.1. Let (M̄, g) be a Riemannian manifold with metric g. A vector
field X is said to be a Killing field if the Lie derivative with respect to X of
the metric g vanishes, that is, LXg = 0.

As a special case of Killing field for a real hypersurface M in a Riemannian
manifold M̄ , we can give the notion of isometric Reeb flow, which means that
the Reeb vector field ξ = −JN , where N denotes the normal vector field of
M , is Killing. By using Lie algebraic methods given in [1], [2] and [9], Berndt-
Suh [6] gave a complete classification of real hypersurfaces with isometric Reeb
flow in Hermitian symmetric spaces. In [26], Suh considered the notion of
isometric Reeb flow for real hypersurfaces in the complex hyperbolic two-plane
Grassmannians SU2,m/S(U2 · Um) and give a classification theorem as follows.

Theorem A. Let M be a connected orientable real hypersurface in the complex
hyperbolic two-plane Grassmannians G∗2(Cm+2) = SU2,m/S(U2Um), m ≥ 3.
Then, the Reeb flow on M is isometric if and only if M is locally congruent to
an open part of

(T ∗A) a tube around some totally geodesic SU2,m−1/S(U2Um−1) in
SU2,m/S(U2Um) or

(H∗A) a horosphere whose center at infinity is singular.

As a generalization of such a Killing vector field, Yano (see [33–35]) defined
the notion of Killing tensor as follows.

Definition 1.2. A skew symmetric tensor field Ti1···ir of order r is Killing if
it satisfies

∇i1Ti2···ir+1
+∇i2Ti1···ir+1

= 0.

Blair [8] has applied the notion of Killing tensor to a tensor field T of
type (1, 1) on a Riemannian manifold M̄ and a geodesic γ defined on M̄ . If we
denote by γ′ the tangent vector of the geodesic γ, then Tγ′ is parallel along
the geodesic γ for the Killing tensor field T . Geometrically, this means that
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(∇γ′T )γ′ = 0 along a geodesic γ on M̄ . If this is the case for any geodesic on
M̄ , we have

(∇XT )X = 0 or equivalently (∇XT )Y + (∇Y T )X = 0

for any vector fields X and Y on M̄ . In this case we say that the tensor T a
Killing tensor field of type (1, 1).

On the other hand, Heil, Moroianu and Semmelmann [10], Semmelmann [25]
have remarked that Killing p-tensors are symmetric p-tensor with vanishing
symmetrized covariant derivative and the existing literature on symmetric
Killing tensors is huge, especially coming from theoretical physics. Moreover,
Semmelmann [25] has asserted that a classical object of differential geometry
are Killing vector fields. These are by definition infinitesimal isometries, i.e.,
the flow of such a vector field preserves a given metric (see also Thompson [32]).

Now, we define a structure Jacobi tensor Rξ of type (0,2) on M̄ given by

Rξ(X,Y ) = g(RξX,Y ),

where Rξ is the structure Jacobi operator of type (1,1) and X, Y are vector
fields on M̄ . Furthermore, we can also define:

Definition 1.3. The symmetric structure Jacobi tensor Rξ of type (0,2) on M̄
is called generalized Killing if the equation

(1.1) (∇XRξ) (X,X) = g ((∇XRξ)X,X) = 0

holds for all vector fields X ∈ TM̄ .

On the other hand, by virtue of polarization, (1.1) can be rearranged as

(1.2) g ((∇XRξ)Y,Z) + g ((∇YRξ)Z,X) + g ((∇ZRξ)X,Y ) = 0

for any vector fields X, Y and Z on M̄ . We say that the structure Jacobi
operator Rξ is cyclic parallel if it satisfies (1.2). For the sake of convenience,
(1.2) can be written as

(1.3) SX,Y,Zg ((∇XRξ)Y,Z) = 0

for any X, Y and Z ∈ TM , where SX,Y,Z denotes the cyclic sum with respect
to the vector fields X,Y and Z. So, the notion of generalized Killing structure
Jacobi tensor of M̄ is the same as cyclic parallel structure Jacobi operator of M̄ .
Here, we can give the geometric meaning of the generalized Killing structure
Jacobi tensor as follows: When we consider a geodesic γ with initial conditions
such that γ(0) = z ∈ M̄ and γ̇(0) = X. Then the structure Jacobi curvature
Rξ(γ̇, γ̇) = g(Rξγ̇, γ̇) is constant along the geodesic γ of the vector field X (see
Semmelmann [25]).

On the other hand, a real hypersurface M in SU2,m/S(U2 · Um) is said to
be Hopf if the shape operator A of M satisfies Aξ = αξ, α = g(Aξ, ξ), for the
Reeb vector field ξ = −JN , where N denotes a unit normal vector field on M .

From such a view point, in a direction of generalized Killing structure Jacobi
operator for real hypersurfaces in G2(Cm+2) we gave an important result. In
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fact, recently, for a real hypersurface in G2(Cm+2) with generalized Killing
structure Jacobi operator Lee, Suh, and Woo [17] gave a classification theorem
as follows:

Theorem B. Let M be a Hopf real hypersurface in complex two-plane Grass-
mannians G2(Cm+2), m ≥ 3. Then the structure Jacobi operator Rξ of M is
generalized Killing if and only if M is locally congruent to an open part of a
tube of r = π

4
√
2

around a totally geodesic G2(Cm+1) in G2(Cm+2).

Motivated by this result, it is natural to consider a generalized Killing struc-
ture Jacobi operator for real hypersurfaces M in SU2,m/S(U2 · Um). Then we
can assert the following:

Main Theorem. There does not exist a connected Hopf real hypersurface in
complex hyperbolic two-plane Grassmannians SU2,m/S(U2 · Um), m ≥ 3, with
generalized Killing structure Jacobi operator.

On the other hand, the symmetric tensor T on M is said to be parallel if
the tensor T satisfies ∇T = 0. If the symmetric tensor T is parallel, then T ,
naturally, satisfies

SX,Y,Z∈TM g((∇XT )Y, Z) = 0

for any tangent vector fields X, Y and Z on M . This is a natural generalization
of the parallel symmetric tensor T and can be rephrased as follows:

If the symmetric tensor T is parallel, then naturally T becomes
a generalized Killing tensor.

Consequently, it is a general notion weaker than usual parallelism. If we apply
such a relation to the structure Jacobi operator Rξ for a real hypersurface M
in SU2,m/S(U2 · Um), m ≥ 3, we can give the following result from our Main
Theorem.

Corollary. There does not exist a connected Hopf real hypersurface in complex
hyperbolic two-plane Grassmannians SU2,m/S(U2 · Um), m ≥ 3, with parallel
structure Jacobi operator.

2. The complex hyperbolic two-plane Grassmannian
SU2,m/S(U2 · Um)

In this section we summarize basic material about complex hyperbolic two-
plane Grassmann manifolds SU2,m/S(U2 · Um), for details we refer to [3–5, 7,
26–28].

The Riemannian symmetric space SU2,m/S(U2·Um), which consists of all
complex two-dimensional linear subspaces in indefinite complex Euclidean space
Cm+2

2 , becomes a connected, simply connected, irreducible Riemannian sym-
metric space of noncompact type and with rank two. Let G = SU2,m and
K = S(U2·Um), and denote by g and k the corresponding Lie algebra of the
Lie group G and K, respectively. Let B be the Killing form of g and denote
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by p the orthogonal complement of k in g with respect to B. The resulting
decomposition g = k⊕p is a Cartan decomposition of g. The Cartan involution

θ ∈ Aut(g) on su2,m is given by θ(A) = I2,mAI2,m, where I2,m =
(
−I2 02,m
0m,2 Im

)
,

I2 and Im denotes the identity (2×2)-matrix and (m×m)-matrix, respectively.
Then 〈X,Y 〉 = −B(X, θY ) becomes a positive definite Ad(K)-invariant inner
product on g. Its restriction to p induces a metric g on SU2,m/S(U2·Um), which
is also known as the Killing metric on SU2,m/S(U2·Um). Throughout this paper
we consider SU2,m/S(U2·Um) together with this particular Riemannian metric
g.

The Lie algebra k decomposes orthogonally into k = su2⊕sum⊕u1, where u1
is the one-dimensional center of k. The adjoint action of su2 on p induces the
quaternionic Kähler structure J on SU2,m/S(U2·Um), and the adjoint action of

Z =

( mi
m+2I2 02,m
0m,2

−2i
m+2Im

)
∈ u1

induces the Kähler structure J on SU2,m/S(U2·Um). By construction, J com-
mutes with each almost Hermitian structure Jν in J for ν = 1, 2, 3. Recall
that a canonical local basis J1, J2, J3 of a quaternionic Kähler structure J con-
sists of three almost Hermitian structures J1, J2, J3 in J such that JνJν+1 =
Jν+2 = −Jν+1Jν , where the index ν is to be taken modulo 3. The tensor field
JJν , which is locally defined on SU2,m/S(U2·Um), is selfadjoint and satisfies
(JJν)2 = I and tr(JJν) = 0, where I is the identity transformation. For a
nonzero tangent vector X we define RX = {λX |λ ∈ R}, CX = RX ⊕ RJX,
and HX = RX ⊕ JX.

We identify the tangent space ToSU2,m/S(U2·Um) of SU2,m/S(U2·Um) at
o with p in the usual way. Let a be a maximal abelian subspace of p. Since
SU2,m/S(U2·Um) has rank two, the dimension of any such subspace is two.
Every nonzero tangent vector X ∈ ToSU2,m/S(U2·Um) ∼= p is contained in
some maximal abelian subspace of p. Generically this subspace is uniquely
determined by X, in which case X is called regular. If there exists more than
one maximal abelian subspaces of p containing X, then X is called singular.
There is a simple and useful characterization of the singular tangent vectors: A
nonzero tangent vector X ∈ p is singular if and only if JX ∈ JX or JX ⊥ JX.

In Section 4, we will prove that under the given condition, the normal vector
field N is singular tangent, that is, the Reeb vector field ξ belongs to either
the maximal quaternionic subbundle Q or its orthogonal complement Q⊥ (see
[17,18]).

3. Real hypersurfaces in complex hyperbolic two-plane
Grassamannian SU2,m/S(U2 · Um)

LetM be a real hypersurface in complex hyperbolic two-plane Grassmannian
SU2,m/S(U2 ·Um), that is, a hypersurface in SU2,m/S(U2 ·Um) with real codi-
mension one. It implies that the normal bundle T ∗M of M in SU2,m/S(U2 ·Um)
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is given T ∗M = span{N}, where N is a unit normal vector field of M in
SU2,m/S(U2 ·Um). The induced Riemannian metric on M will also be denoted
by g, and ∇ denotes the Levi-Civita connection of (M, g). As mentioned in Sec-
tion 2, complex hyperbolic two-plane Grassmannians SU2,m/S(U2 · Um) have
the Kähler structure J and quaternionic Kähler structure J = span{J1, J2, J3}.
From these structures, let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector field X of a real hypersurface M in SU2,m/S(U2 · Um),
where φX and φνX denote the tangential components of JX and JνX, respec-
tively.

From the Kähler structure J of SU2,m/S(U2 · Um) there exists an almost
contact metric structure (φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, and η(X) = g(X, ξ)

for any vector field X on M and ξ = −JN . If M is orientable, then the vector
field ξ is globally defined and said to be the induced Reeb vector field on M .

Furthermore, let J1, J2, J3 be a canonical local basis of J. Then, each Jν
induces a local almost contact metric structure (φν , ξν , ην , g), ν = 1, 2, 3, on
M . It satisfies

φ2νX = −X + ην(X)ξν , φνξν = 0, ην(ξν) = 1, and ην(X) = g(X, ξν)

for any vector field X tangent to M and ξν = −JνN , ν = 1, 2, 3. Moreover,
it is known that the almost contact metric structure Jν , ν = 1, 2, 3 satisfies
JνJν+1 = Jν+2 = −Jν+1Jν (ν = mod 3). From this property, we get

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1.

The tangential and normal components of the commuting identity JJνX =
JνJX give

φφνX − φνφX = ην(X)ξ − η(X)ξν and ην(φX) = η(φνX).

The last equation implies φνξ = φξν .
Moreover, from the parallelisms of Kähler structure J and the quaternionic

Kähler structure J (i.e., ∇̄XJ = 0 and ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2,
respectively), together with Gauss and Weingarten formulas, it follows that

(3.1) (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX,

(∇Xφν)Y = −qν+1(X)φν+2Y +qν+2(X)φν+1Y +ην(Y )AX−g(AX,Y )ξν ,

∇Xξν = qν+2(X)ξν+1−qν+1(X)ξν+2+φνAX.
(3.2)
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Using the explicit expression for the Riemannian curvature tensor R̄ of
SU2,m/S(U2 · Um) in [3] the Codazzi equation takes the form

(∇XA)Y − (∇YA)X

= − 1

2

[
η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+

3∑
ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}
+

3∑
ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}
+

3∑
ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν

]
(3.3)

for any vector fields X and Y on M . Moreover, we have the equation of Gauss
as follows:

R(X,Y )Z

= − 1

2

[
g(Y,Z)X−g(X,Z)Y +g(φY,Z)φX−g(φX,Z)φY −2g(φX, Y )φZ

+

3∑
ν=1

{g(φνY,Z)φνX − g(φνX,Z)φνY − 2g(φνX,Y )φνZ}

+

3∑
ν=1

{g(φνφY,Z)φνφX − g(φνφX,Z)φνφY }

−
3∑

ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
3∑

ν=1

{η(X)g(φνφY,Z)− η(Y )g(φνφX,Z)} ξν
]

+ g(AY,Z)AX − g(AX,Z)AY

(3.4)

for any tangent vector fields X,Y and Z on M .
On the other hand, the Jacobi operator field with respect to X in a Rie-

mannian manifold M̄ is defined by R̄X = R̄( · , X)X, where R̄ denotes the
Riemannian curvature tensor of M̄ . We will call the Jacobi operator on a real
hypersruface M in M̄ with respect to ξ the structure Jacobi operator on M .
Thus, from (3.4) the structure Jacobi operator Rξ of M in SU2,m/S(U2 · Um)
is given by

Rξ(X) = R(X, ξ)ξ

= − 1

2

[
X − η(X)ξ −

3∑
ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

}
(3.5)
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−
3∑

ν=1

{
3g(φνX, ξ)φνξ + ην(ξ)φνφX

}]
+ αAX − η(AX)Aξ,

where the function α is defined by α = g(Aξ, ξ) and said to be the Reeb function
on M (see [31]).

Finally, we denote by C and Q the maximal complex and quaternionic sub-
bundle of the tangent bundle TM on M , respectively. That is, C is the orthogo-
nal complement in TM of the real span of ξ, and Q the orthogonal complement
in TM of the real span of {ξ1, ξ2, ξ3}. Hereafter, unless otherwise stated, we
want to use these basic equations mentioned above frequently without referring
to them explicitly.

4. Key lemma

Let M be a Hopf real hypersurface in complex hyperbolic two-plane Grass-
mannians SU2,m/S(U2 · Um). Hereafter, unless otherwise stated, we consider
that X and Y are any tangent vector fields on M . With the assumption of M
being Hopf, together with the Codazzi equation, we obtain (see [3, 15,16]):

(4.1) Y α = (ξα)η(Y ) + 2

3∑
ν=1

ην(ξ)ην(φY )

and

AφAY =
α

2
(Aφ+ φA)Y +

3∑
ν=1

{
η(Y )ην(ξ)φξν + ην(ξ)ην(φY )ξ

}
− 1

2
φY − 1

2

3∑
ν=1

{
ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY

}(4.2)

for any vector field Y on M .
In order to consider the generalized Killing structure Jacobi operator, let us

calculate the formula (∇XRξ)Y for any tangent vector fields X and Y on M .
From (3.5) and our assumption of M being Hopf, it follows that

2(∇XRξ)Y
= g(φAX, Y )ξ + η(Y )φAX − 2αη(Y )(∇XA)ξ − 2αη(Y )AφAX

+ 2η((∇XA)ξ)AY +2α(∇XA)Y −2αη((∇XA)Y )ξ−2αg(AY, φAX)ξ

+

3∑
ν=1

[
g(φνAX,Y )ξν − 2η(Y )ην(φAX)ξν + ην(Y )φνAX(4.3)

+ 3g(φνAX,φY )φνξ + 3η(Y )ην(AX)φνξ + 3ην(φY )φνφAX

− 3αην(φY )η(X)ξν + 4ην(ξ)ην(φY )AX

− 4g(AX,Y )ην(ξ)φνξ + 2ην(φAX)φνφY
]
.
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Replacing the vector fields X and Y by Z and X in (4.3), respectively, let us
take the inner product of the obtained equation with Y . Then by using the
equation of Codazzi, we have

2g((∇ZRξ)X,Y )

= − g(AφX,Z)g(ξ, Y )− η(X)g(AφY,Z)

+
{

2(ξα)η(Z) + 4

3∑
ν=1

ην(ξ)ην(φZ)
}
g(AX,Y )

+

3∑
ν=1

[
− g(AφνX,Z)ην(Y ) + 2η(X)ην(Y )g(Aφξν , Z)

− 2αη(Y )
{

(ξα)η(X)η(Z)− 2η(X)

3∑
ν=1

ην(ξ)g(φξν , Z)
}

+ 2αg(AφAX,Z)η(Y ) + 2αη(X)g(AφAY,Z)

(4.4)

− 2αη(X)η(Z)
{

(ξα)η(Y )− 2
3∑

ν=1

ην(ξ)g(φξν , Y )
}

− ην(X)g(AφνY, Z) + 3g(AφνφX,Z)ην(φY )

− 3η(X)ην(φY )g(Aξν , Z) + 3ην(φX)g(AφφνY,Z)

+ 3αην(φX)ην(φY )η(Z) + 4ην(ξ)ην(φX)g(AY,Z)

+ 4ην(ξ)ην(φY )g(AX,Z)− 2g(φνφX, Y )g(Aφξν , Z)
]

+ α
[
2g((∇XA)Y, Z)−η(X)g(φY,Z)−η(Z)g(φX, Y )−2η(Y )g(φX,Z)

+

3∑
ν=1

{
− ην(X)g(φνY, Z)−ην(Z)g(φνX,Y )−2ην(Y )g(φνX,Z)

}
+

3∑
ν=1

{
ην(φX)g(φφνY,Z)− ην(φZ)g(φνφX, Y )

}
+

3∑
ν=1

{
η(X)ην(Y )ην(φZ)− ην(φX)ην(Y )η(Z)

}]
for any tangent vector fields X, Y , and Z on M .

Now let us use the symmetric property of ∇YRξ, that is, g((∇YRξ)Z,X) =
g(Z, (∇YRξ)X) in (4.4) and the equation of Codazzi. Then after deleting the
vector field Z from the obtained equation, we can rearrange the generalized
Killing structure Jacobi operator as follows:

0 = g(φAX, Y )ξ + η(Y )φAX

+ 2η((∇XA)ξ)AY + 2α(∇XA)Y − 2αη((∇XA)Y )ξ
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− 2αg(AY, φAX)ξ − 2αη(Y )(∇XA)ξ − 2αη(Y )AφAX

+ g(φAY,X)ξ + η(X)φAY + 2η((∇YA)ξ)AX

+ 2α(∇YA)X − 2αη((∇YA)X)ξ − 2αg(AX,φAY )ξ

− 2αη(X)(∇YA)ξ − 2αη(X)AφAY − η(Y )AφX − η(X)AφY

+ 2(ξα)g(AX,Y )ξ − 4(ξα)g(AX,Y )

3∑
ν=1

ην(ξ)φξν + 2α(∇XA)Y

− αη(X)φY − αg(φX, Y )ξ − 2αη(Y )φX − 4α(ξα)η(X)η(Y )ξ

+ 2αη(Y )AφAX + 2αη(X)AφAY

+

3∑
ν=1

[
g(φνAX,Y )ξν − 2η(Y )ην(φAX)ξν + ην(Y )φνAX

+ 3g(φνAX,φY )φνξ+3η(Y )ην(AX)φνξ+3ην(φY )φνφAX

− 3αην(φY )η(X)ξν + 4ην(ξ)ην(φY )AX

− 4ην(ξ)g(AX,Y )φνξ + 2ην(φAX)φνφY
]

(4.5)

+

3∑
ν=1

[
g(φνAY,X)ξν − 2η(X)ην(φAY )ξν + ην(X)φνAY

+ 3g(φνAY, φX)φνξ+3η(X)ην(AY )φνξ+3ην(φX)φνφAY

− 3αην(φX)η(Y )ξν + 4ην(ξ)ην(φX)AY

− 4ην(ξ)g(AY,X)φνξ + 2ην(φAY )φνφX
]

+

3∑
ν=1

[
− ην(Y )AφνX + 2η(X)ην(Y )Aφξν − ην(X)AφνY

+ 3ην(φY )AφνφX − 3η(X)ην(φY )Aξν + 3ην(φX)AφφνY

− 3αην(φX)ην(Y )ξ + 4ην(ξ)ην(φX)AY

+ 4ην(ξ)ην(φY )AX − 2g(φνφX, Y )Aφξν
]

+ α

3∑
ν=1

[
− ην(X)φνY − g(φνX,Y )ξν − 2ην(Y )φνX

+ ην(φX)φφνY + g(φνφX, Y )φξν + 4η(X)η(Y )ην(ξ)φξν

− η(X)ην(Y )φξν − ην(φX)ην(Y )ξ − 4η(X)ην(ξ)ην(φY )ξ
]
,

where we have used (3.3) and (4.1). Then, by virtue of (4.5) and basic equations
given in Section 3, we can prove the following:

Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic
two-plane Grassmannian SU2,m/S(U2 · Um), m ≥ 3, with generalized Killing
structure Jacobi operator. Then the Reeb vector field ξ belongs to either the
maximal quaternionic subbundle Q or its orthogonal complement Q⊥.
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Proof. In order to prove this lemma, we put

(4.6) ξ = η(X0)X0 + η(ξ1)ξ1 such that η(X0)η(ξ1) 6= 0

for some unit vectors X0 ∈ Q and ξ1 ∈ Q⊥.
Together with (4.6) and a Hopf hypersurface condition, if α = g(Aξ, ξ)

vanishes on M , then (4.1) implies η(ξ1)φξ1 = 0. This gives ξ belongs to either
Q or Q⊥. So we may assume that α is non-vanishing.

Lee and Loo [14] show that if M is Hopf, then the Reeb function α is constant
along the direction of structure vector field ξ, that is, ξα = 0. Also in [16], we
see that ξα = 0 gives the distribution Q- and the Q⊥-component of the Reeb
vector field ξ is invariant by the shape operator A, that is,

AX0 = αX0, and Aξ1 = αξ1.

In addition, from (4.6) and φξ = 0, we have
φX0 = −η(ξ1)φ1X0,

φξ1 = φ1ξ = η(X0)φ1X0,

φ1φX0 = η(ξ1)X0.

The equation (4.2) yields αAφX0 = (α2−2η2(X0))φX0 by substituting X0 ∈ Q
instead of X. Since we assumed that the Reeb function α is non-vanishing, it
becomes

AφX0 = σφX0, where σ =
α2 − 2η2(X0)

α
.

Putting X = X0 and Y = ξ1 in (4.5), we have

0 = αη(ξ1)φX0 + αφ1X0

+ 2αη((∇X0
A)ξ)ξ1 + 2α(∇X0

A)ξ1 − 2αη((∇X0
A)ξ1)ξ

− 2αη(ξ1)(∇X0A)ξ − 2α2ση(ξ1)X0 + αη(X0)φξ1 + 3αη(X0)φ1ξ

+ 2αη((∇ξ1A)ξ)X0 + 2α(∇ξ1A)X0 − 2αη((∇ξ1A)X0)ξ

− 2αη(X0)(∇ξ1A)ξ − 2α2ση(X0)φξ1

− ση(ξ1)φX0 − ση(X0)φξ1 − σφ1X0 + 2ση(X0)φξ1

+ 2α(∇X0
A)ξ1 − αη(X)φξ1 − 2αη(ξ1)φX0

− 2αφ1X0 − αη(X0)φξ1 + 4αη(X0)η2(ξ1))φξ1

+ 2α2ση(ξ1)X0 + 2α2ση(X0)ξ1.

(4.7)

On the other hand, taking the covariant derivative with respect to the Levi-
Civita connection ∇ of M to the assumption of Aξ1 = αξ1 and using (3.2), we
get

(∇XA) ξ1 = (Xα)ξ1 + α∇Xξ1 −A (∇Xξ1)

= (Xα)ξ1 + α {q3(X)ξ2 − q2(X)ξ3 + φ1AX}
− q3(X)Aξ2 + q2(X)Aξ3 −Aφ1AX
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= 4η (ξ1) g(φξ,X)ξ1 + α {q3(X)ξ2 − q2(X)ξ3 + φ1AX}
− q3(X)Aξ2 + q2(X)Aξ3 −Aφ1AX.

Moreover, by using the similar method given in [13] we obtain qν(ξ) = qν(ξ1) =
qν(X0) = 0 for ν = 2, 3. Thus we have

(4.8) (∇XA) ξ1 = 4η (ξ1) g(φξ,X)ξ1 + αφ1AX −Aφ1AX

and

(4.9)



(∇X0
A) ξ1 = α {q3(X0)ξ2 − q2(X0)ξ3 + αφ1X0}

− q3(X0)Aξ2 + q2(X0)Aξ3 − ασφ1X0,

= (α2 − ασ)φ1X0,

(∇X0A) ξ = (X0α)ξ − (α2 − ασ)φX0,

(∇ξ1A) ξ = (ξ1α)ξ − (α2 − ασ)φξ1,

(∇ξ1A)X0 = (∇X0
A)ξ1.

Using (4.8) and (4.9), then (4.7) becomes

0 = − αη2(ξ1)φ1X0 + αφ1X0 + 2α(α2 − ασ)φ1X0 − 2αη((∇X0
A)ξ1)ξ

− 2αη(ξ1)((X0α)ξ + (α2 − ασ)η(ξ1)φ1X0)− 2α2ση(ξ1)X0

+ αη2(X0)φ1X0 + 3αη2(X0)φ1X0 + 2αη((∇ξ1A)ξ)X0

+ 2α(α2 − ασ)φ1X0 − 2αη((∇ξ1A)X0)ξ − 2αη(X0)(ξ1α)ξ(4.10)

+ 2αη(X0)(α2 − ασ)η(X0)φ1X0 − 2α2ση2(X0)φ1X0

+ ση2(ξ1)φ1X0 − ση2(X0)φ1X0 − σφ1X0 + 2ση2(X0)φ1X0

+ 2α(α2 − ασ)φ1X0 − 2αη2(X0)φ1X0 + 2αη(ξ1)2φ1X0 − 2αφ1X0

+ 4αη2(ξ1)η2(X0)φ1X0 + 2α2ση(ξ1)X0 + 2α2ση(X0)ξ1.

Taking the inner product of (4.10) with ξ1, then we have

0 = 2αη((∇X0
A)ξ)− 2αη((∇X0

A)ξ1)η(ξ1)

− 2αη((∇ξ1A)X0)η(ξ1) + 2α2ση(X0)

= 2α2ση(X0).

(4.11)

Since σ = α2−2η2(X0)
α and αη(X0) 6= 0, (4.11) gives us

α2 = 2η2(X0).(4.12)

Taking the inner product of (4.10) with φ1X0, then we have

0 = −4η4(X0) +
{

4α2 − 6ασ + 5
}
η2(X0) + 6α2 − 6ασ − 2α2 + 2ασ.

Since σ = α2−2η2(X0)
α and η2(X0) 6= 0, we have

0 = 12η2(X0)− 2α2 + 9.(4.13)
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Using (4.12) and (4.13), we have

η2(X0) = −9

8
.

This gives us a contradiction. So, we assert that ξ belongs to either Q or
Q⊥. �

5. The Reeb vector field ξ ∈ Q⊥

Let M be a Hopf hypersurface in SU2,m/S(U2 ·Um) with generalized Killing
structure Jacobi operator. Then by Lemma 4.1 we shall make an investigation
into two cases depending on ξ belongs to either distribution Q⊥ or distribution
Q, respectively. So, in this section let us consider the case ξ ∈ Q⊥ (i.e.,
JN ∈ JN where N is a unit normal vector field on M in SU2,m/S(U2 · Um)).
Since Q⊥ = span{ξ1, ξ2, ξ3}, we may put ξ = ξ1. By using this equation we
obtain:

Lemma 5.1. Let M be a Hopf hypersurface in SU2,m/S(U2 ·Um), m ≥ 3 and
ξ ∈ Q⊥. Then

(i) φAX = 2η3(AX)ξ2 − 2η2(AX)ξ3 + φ1AX and
(ii) AφX = 2η3(X)Aξ2 − 2η2(X)Aξ3 +Aφ1X.

Proof. Differentiating ξ = ξ1 along any direction X ∈ TM and using (3.2), it
gives

(5.1) φAX = ∇Xξ = ∇Xξ1 = q3(X)ξ2 − q2(X)ξ3 + φ1AX.

Taking the inner product with ξ2 and ξ3 in (5.1), respectively, gives

q3(X) = 2η3(AX) and q2(X) = 2η2(AX).

Then (5.1) can be revised:

φAX = 2η3(AX)ξ2 − 2η2(AX)ξ3 + φ1AX.

From this, by applying the inner product with any tangent vector Y , we
have

g(φAX, Y ) = 2η3(AX)g(ξ2, Y )− 2η2(AX)g(ξ3, Y ) + g(φ1AX,Y ).

Then, by using the symmetric (resp. skew-symmetric) property of the shape
operator A (resp. the structure tensor field φ), we have

−g(X,AφY ) = 2g(X,Aξ3)g(ξ2, Y )− 2g(X,Aξ2)g(ξ3, Y )− g(Y,Aφ1X)

for any tangent vector fields X and Y on M . Then it can be rewritten as below:

AφX = 2η3(X)Aξ2 − 2η2(X)Aξ3 +Aφ1X. �

From now on, by using this lemma, let us consider our classification problem
with respect to the notion of generalized Killing structure Jacobi operator of a
real hypersurface with ξ ∈ Q⊥ in complex hyperbolic two-plane Grassmanni-
ans SU2,m/S(U2 · Um), m ≥ 3.
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In order to do this, putting X = ξ into (4.3), and replacing Y as X, we have

2(∇ξRξ)X = 2(ξα)AX + 2α(∇ξA)X − 4α(ξα)η(X)ξ

− 4α

3∑
ν=1

{
ην(φX)ξν − ην(X)φνξ

}
+ 4α

3∑
ν=1

{
ην(ξ)ην(φX)ξ − ην(ξ)η(X)φνξ

}(5.2)

for any tangent vector field X on M .
On the other hand, putting Y = ξ into (4.3), we have

2(∇XRξ)ξ = φAX − 2αAφAX

−
3∑

ν=1

{
g(φνAX, ξ)ξν − ην(ξ)φνAX

}
+

3∑
ν=1

{
3ην(AX)φνξ − 8ην(ξ)g(AX, ξ)φνξ

}
.

(5.3)

By using these equations, we assert:

Lemma 5.2. Let M be a real hypersurface in SU2,m/S(U2 · Um), m ≥ 3 with
generalized Killing structure Jacobi operator. If the Reeb vector field ξ belongs
to the distribution Q⊥, then the shape operator A commutes with the structure
operator φ, that is, Aφ = φA.

Proof. By our assumption ξ ∈ Q⊥, we may put ξ = ξ1. Substituting Z = ξ
into (1.2), then the generalized Killing structure Jacobi operator Rξ of M
becomes

g ((∇XRξ)Y, ξ) + g ((∇YRξ) ξ,X) + g ((∇ξRξ)X,Y ) = 0.(5.4)

From (5.2) and (5.3), the equation (5.4) follows

0 = g(φAX, Y ) + g(φ1AX) + η2(Y )η3(AX)− η3(Y )η2(AX)

+

3∑
ν=1

[
− g(φνAY, ξ)g(ξν , X) + 3ην(AY )g(φνξ,X)

]
(5.5)

+

3∑
ν=1

[
− 4αην(φX)g(ξν , Y ) + 4αην(X)g(φνξ, Y )

]
+ 2αg(∇ξA)X,Y )

for any vector fields X and Y on M in SU2,m/S(U2 · Um). Then it can be
rewritten as follows:

0 = φAX + φ1AX + 2η3(AX)ξ2 − 2η2(AX)ξ3

−AφX −Aφ1X − 2η3(X)Aξ2 + 2η2(X)Aξ3 + 2α(∇ξA)X.
(5.6)
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By (i) (resp. (ii)) in Lemma 5.1, we have

0 = 2φAX − 2AφX + 2α(∇ξA)X(5.7)

for any tangent vector field X on M .
On the other hand, putting X = ξ into the equation of Codazzi and substi-

tute Y as X, we have

(5.8) 2(∇XA)ξ − 2(∇ξA)X = φX + φ1X + 2η3(X)ξ2 − 2η2(X)ξ3.

Since M is Hopf and ξ ∈ Q⊥, we get

(5.9) (∇XA)ξ = (Xα)ξ + αφAX −AφAX
and

(5.10) 2AφAX = α(Aφ+ φA)X − φX − φ1X + 2η2(X)ξ3 − 2η3(X)ξ2.

By (5.9) and (5.10), the equation (5.8) becomes

2(Xα)ξ + αφAX − αAφX − 2(∇ξA)X = 0.

So, we have 2(∇ξA)X = 2(Xα)ξ + α(φA−Aφ)X. Moreover, taking the inner
product of (5.6) with ξ and using (5.5), we have Xα = (ξα)η(X). Hence, we
have

(∇ξA)X = (ξα)η(X)ξ +
α

2
φAX − α

2
AφX.

From [14], we know that ξα = 0 under the condition of Hopf hypersurface.
Thus the above equation leads to

2α(∇ξA)X = α2(φAX −AφX).

From this, the equation (5.7) becomes

0 = 2φAX − 2AφX + α2φAX − α2AφX

= (α2 + 2)(φAX −AφX).

Since (α2 + 2) is non-vanishing on M , it means that φAX − AφX = 0, which
completes the proof of Lemma 5.2. �

Through algebraic calculations, we see that the notion of isometric Reeb
flow is equivalent to the fact that the shape operator A of M satisfies Aφ = φA.
In fact, taking the Lie derivative for the metric tensor field g of type (0,2)
along the Reeb direction ξ and using Lξ(g(X,Y )) = ∇ξ(g(X,Y )), together
with LXY = [X,Y ] = ∇XY −∇YX and (3.1), we obtain

0 = (Lξg)(X,Y )

= Lξ(g(X,Y ))− g(LξX,Y )− g(X,LξY )

= ∇ξ(g(X,Y ))− g([ξ,X], Y )− g(X, [ξ, Y ])

= g(∇ξX,Y ) + g(X,∇ξY )− g(∇ξX,Y ) + g(∇Xξ, Y )

− g(X,∇ξY ) + g(X,∇Y ξ)
= g(∇Xξ, Y ) + g(X,∇Y ξ)



270 H. LEE, Y. J. SUH, AND C. WOO

= g(φSX, Y ) + g(X,φSY ) = g((φS − Sφ)X,Y )

for any tangent vector fields X and Y on M . Thus, Lemma 5.2, consequently,
assures that a real hypersurface M with generalized Killing structure Jacobi
operator in complex hyperbolic two-plane Grassmannians satisfying ξ ∈ Q⊥
has isometric Reeb flow. Therefore, by Theorem A in the introduction, we
assert that a real hypersurface M with the assumptions given in Lemma 5.2 is
locally congruent to one of the following real hypersurfaces:

(T ∗A) a tube over a totally geodesic SU2,m−1/S(U2 · Um−1) in
SU2,m/S(U2 · Um)

or

(H∗A) a horosphere in SU2,m/S(U2 · Um) whose center at infinity is singular
and of type JX ∈ JX.

Therefore, by virtue of Lemma 5.2 we conclude that if ξ ∈ Q⊥, then M is of
(T ∗A) or (H∗A), where M is a Hopf hypersurface in SU2,m/S(U2 · Um), m ≥ 3,
satisfying generalized Killing structure Jacobi operator. Such real hypersur-
faces of type (T ∗A) and (H∗A) in SU2,m/S(U2 · Um) are denoted by MA. In [5],
Berndt and Suh gave some information related to the shape operator A of (T ∗A)
and (H∗A) as follows.

Proposition A. Let MA be a connected real hypersurface of type (T ∗A) or (H∗A)
in complex hyperbolic two-plane Grassamnnian SU2,m/S(U2Um), m ≥ 3. Then
one of the following statements holds:

(a) MA is Hopf.
(b) The maximal complex subbundle C of TMA and the maximal quaternionic

subbundle Q of TMA are both invariant under the shape operator S of
MA.

(c) The normal vector field N of MA in SU2,m/S(U2 · Um) is singular sat-
isfying JN ∈ JN .

(d) All eigenvalues of MA are constant as follows.
• (T ∗A) has exactly four distinct constant principal curvatures

α = 2 coth(2r), β = coth(r), λ1 = tanh(r), λ2 = 0,

and the corresponding principal curvature spaces are

Tα = span{ξ}, Tβ = span{ξ2, ξ3}, Tλ1
= E−1, Tλ2

= E+1.

The principal curvature spaces Tλ1
and Tλ2

are complex (with respect
to J) and totally complex (with respect to J).
• (H∗A) has exactly three distinct constant principal curvatures

α = 2, β = 1, λ = 0

with corresponding principal curvature spaces

Tα = span{ξ}, Tβ = span{ξ2, ξ3} ⊕ E−1, Tλ = E+1.
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Here, E+1 and E−1 are the eigenbundles of φφ1|Q with respect to
the eigenvalues +1 and −1, respectively.

(e) The Reeb flow of MA is isometric.

From (a) and (b) of Proposition A, we see that the model space MA is Hopf
with ξ ∈ Q⊥. So, in the remaining part of this section, by using Proposition A
let us check if the structure Jacobi operator Rξ on a real hypersurface MA of
type (T ∗A) (or (H∗A), resp.) satisfies the condition of generalized Killing. In
order to do this, we assume that the structure Jacobi operator Rξ of MA is
generalized Killing. Then, (4.5) becomes

0 = g(φAX, Y )ξ + η(Y )φAX

+ 2α(∇XA)Y − 2αη((∇XA)Y )ξ − 2αg(AY, φAX)ξ

− 2α2η(Y )φAX + g(φAY,X)ξ + η(X)φAY

+ 2α(∇YA)X − 2αη((∇YA)X)ξ − 2αg(AX,φAY )ξ

− 2α2η(X)φAY − η(Y )AφX − η(X)AφY

+ 2α(∇XA)Y − αη(X)φY − αg(φX, Y )ξ − 2αη(Y )φX

+

3∑
ν=1

[
g(φνAX,Y )ξν − 2η(Y )ην(φAX)ξν

+ ην(Y )φνAX + 3g(φνAX,φY )φνξ(5.11)

+ 3η(Y )ην(AX)φνξ + 3ην(φY )φνφAX

− 3αην(φY )η(X)ξν + 2ην(φAX)φνφY
]

+

3∑
ν=1

[
g(φνAY,X)ξν − 2η(X)ην(φAY )ξν

+ ην(X)φνAY + 3g(φνAY, φX)φνξ

+ 3η(X)ην(AY )φνξ + 3ην(φX)φνφAY

− 3αην(φX)η(Y )ξν + 2ην(φAY )φνφX
]

+

3∑
ν=1

[
− ην(Y )AφνX + 2η(X)ην(Y )Aφξν

− ην(X)AφνY + 3ην(φY )AφνφX

− 3η(X)ην(φY )Aξν + 3ην(φX)AφφνY

− 3αην(φX)ην(Y )ξ − 2g(φνφX, Y )Aφξν
]

+ α

3∑
ν=1

[
− ην(X)φνY − g(φνX,Y )ξν − 2ην(Y )φνX

+ ην(φX)φφνY + g(φνφX, Y )φξν

− η(X)ην(Y )φξν − ην(φX)ην(Y )ξ
]
,
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where we have used that the structure vector field ξ of MA belongs to the
distribution Q⊥ and (∇XA)ξ = αφAX−AφAX for any tangent vector field X
on M . Since the tangent bundle TMA of MA is given by TMA = Tα ⊕ Tβ ⊕
E−1 ⊕ E+1, let us consider the case Y = ξ(= ξ1) ∈ Tα. Then (5.11) can be
rewritten as

0 = 2φAX + 2α(∇ξA)X − 2AφX + 2α2φAX − 2αAφAX

− 2αφX + 4αη2(X)ξ3 − 4αη3(X)ξ2.
(5.12)

In addition, by the equation of Codazzi (5.12) gives

0 = (2 + 2α2)φAX − (2 + 2α2)AφX

− αφX + αφ1X + 2αη2(X)ξ3 − 2αη3(X)ξ2
(5.13)

for any tangent vector field X on TMA.
Putting X = ξ2 ∈ Tβ in (5.13) gives

4αξ3 = 0.(5.14)

Bearing in mind Proposition A, in the case of (T ∗A) (resp., (H∗A)), we have α =
2 coth(2r) (resp., α = 2). In both cases, we know that the Reeb function α is
non-vanishing. From this fact, (5.14) gives ξ3 = 0, which gives a contradiction.

Summing up these observations, we assert that the structure Jacobi operator
Rξ of real hypersurfaces MA of two kinds of model spaces (T ∗A) and (H∗A) in
SU2,m/S(U2 · Um) does not satisfy the property of generalized Killing.

6. The Reeb vector field ξ ∈ Q

Let M be a Hopf real hypersurface in complex hyperbolic two-plane Grass-
mannians SU2,m/S(U2 ·Um) with generalized Killing structure Jacobi operator.
Then, by virtue of Lemma 4.1 and the facts in Section 5, we know that the
Reeb vector field ξ belongs to the maximal quaternionic subbundle Q of the
tangent bundle TM on M . So, in this section let us consider ξ ∈ Q (i.e.,
JN ⊥ JN). In [27], Suh gave a complete classification of Hopf real hypersur-
faces in SU2,m/S(U2 · Um) satisfying ξ ∈ Q as follows.

Theorem C. Let M be a Hopf hypersurface in complex hyperbolic two-plane
Grassmannian SU2,m/S(U2 ·Um), m ≥ 3, with the Reeb vector field belonging to
the maximal quaternionic subbundle Q. Then one of the following statements
holds

(T ∗B) M is an open part of a tube around a totally geodesic HHn in
SU2,2n/S(U2U2n), m = 2n,

(H∗B) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at
infinity is singular and of type JN ⊥ JN , or

(E) The normal bundle νM of M consists of singular tangent vectors of
type JX ⊥ JX.



GENERALIZED KILLING STRUCTURE JACOBI OPERATOR 273

Then by the assumption of the generalized Killing structure Jacobi operator
in our Main Theorem, a Hopf hypersurface M in SU2,m/S(U2 · Um) is locally
congruent to an open part of one of the model spaces mentioned in Theorem C.
Hereafter, unless otherwise stated, such model spaces of type of (T ∗B), (H∗B) and
(E) in SU2,m/S(U2 · Um) are denoted by MB .

Moreover, Berndt and Suh [3] gave some geometric properties for the model
space MB as follows.

Proposition B. Let MB be a real hypersurface of type (T ∗B) (resp. (H∗B) or
(E)) in SU2,m/S(U2Um), m ≥ 3. Then one of the following statements holds:

(a) MB is Hopf.
(b) The maximal complex subbundle C of TMB and the maximal quater-

nionic subbundle Q of TMB are both invariant under the shape operator
A of MB.

(c) The normal vector filed N of MB is singular. In particular, it satisfies
JN ⊥ JN .

(d) MB has distinct principal curvatures as follows.

• (T ∗B) has five (four for r =
√

2tanh−1(1/
√

3) in which case α = λ2)
distinct constant principal curvatures

α =
√

2 tanh(
√

2r), β =
√

2 coth(
√

2r), γ = 0,

λ1 =
1√
2

tanh(
1√
2
r), λ2 =

1√
2

coth(
1√
2
r),

and the corresponding principal curvature spaces are

Tα = span{ξ}, Tβ = span{ξ1, ξ2, ξ3},
Tγ = span{φξ1, φξ2, φξ3}.

The principal curvature spaces Tλ1 and Tλ2 are invariant under J
and are mapped onto each other by J . In particular, the quater-
nionic dimension of SU2,m/S(U2Um) must be even.

• (H∗B) has exactly three distinct constant principal curvatures

α = β =
√

2, γ = 0, λ =
1√
2

with corresponding principal curvature spaces

Tα = span{ξ, ξ1, ξ2, ξ3}, Tγ = span{φξ1, φξ2, φξ3},
Tλ = C ∩ Q ∩ JQ.

• (E) has at least four distinct principal curvatures, three of which
are given by

α = β =
√

2, γ = 0, λ =
1√
2
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with corresponding principal curvature spaces

Tα = span{ξ, ξ1, ξ2, ξ3}, Tγ = span{φξ1, φξ2, φξ3},
Tλ ⊂ C ∩ Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature func-
tion, then JTµ ⊂ Tλ and JTµ ⊂ Tλ. Thus, the corresponding
multiplicities are

m(α) = 4, m(γ) = 3, m(λ), m(µ).

From Proposition B, we see that the model space MB is a Hopf real hyper-
surface with ξ ∈ Q in SU2,m/S(U2 · Um). Finally, let us check whether the
structure Jacobi operator Rξ of MB satisfies (1.3).

In order to check this problem, we suppose that the structure Jacobi opera-
tor Rξ of MB is generalized Killing. Since ξ ∈ Q, the equation (4.5) is written
as

0 = g(φAX, Y )ξ + η(Y )φAX

+ 2η((∇XA)ξ)AY + 2α(∇XA)Y − 2αη((∇XA)Y )ξ

− 2αg(AY, φAX)ξ − 2αη(Y )(∇XA)ξ − 2αη(Y )AφAX

+ g(φAY,X)ξ + η(X)φAY + 2η((∇YA)ξ)AX + 2α(∇YA)X

− 2αη((∇YA)X)ξ − 2αg(AX,φAY )ξ − 2αη(X)(∇YA)ξ

− 2αη(X)AφAY − η(Y )AφX − η(X)AφY

+ 2α(∇XA)Y − αη(X)φY − αg(φX, Y )ξ − 2αη(Y )φX

+ 2αη(Y )AφAX + 2αη(X)AφAY

+

3∑
ν=1

[
g(φνAX,Y )ξν − 2η(Y )ην(φAX)ξν + ην(Y )φνAX

+ 3g(φνAX,φY )φνξ + 3η(Y )ην(AX)φνξ + 3ην(φY )φνφAX(6.1)

− 3αην(φY )η(X)ξν + 2ην(φAX)φνφY
]

+

3∑
ν=1

[
g(φνAY,X)ξν − 2η(X)ην(φAY )ξν + ην(X)φνAY

+ 3g(φνAY, φX)φνξ + 3η(X)ην(AY )φνξ + 3ην(φX)φνφAY

− 3αην(φX)η(Y )ξν + 2ην(φAY )φνφX
]

+

3∑
ν=1

[
− ην(Y )AφνX + 2η(X)ην(Y )Aφξν − ην(X)AφνY

+ 3ην(φY )AφνφX − 3η(X)ην(φY )Aξν + 3ην(φX)AφφνY

− 3αην(φX)ην(Y )ξ − 2g(φνφX, Y )Aφξν
]
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+ α

3∑
ν=1

[
− ην(X)φνY − g(φνX,Y )ξν − 2ην(Y )φνX + ην(φX)φφνY

+ g(φνφX, Y )φξν − η(X)ην(Y )φξν − ην(φX)ην(Y )ξ
]

for any tangent vector fields X and Y on TMB .
Putting Y = ξ ∈ Tα into (6.1), we have

0 = φAX + 2α(∇ξA)X −AφX + 2α(∇XA)ξ − 2αφX

+

3∑
ν=1

[
g(φνAX, ξ)ξν − 2ην(φAX)ξν + 3ην(AX)φνξ

+ g(φνAξ,X)ξν + ην(X)φνAξ + 3g(φνAξ, φX)φνξ

− 3αην(φX)ξν − ην(X)Aφνξ + 3ην(φX)Aφφνξ

− 2g(φνφX, ξ)Aφξν − αην(X)φνξ − αg(φνX, ξ)ξν

+ αην(φX)φφνξ + αg(φνφX, ξ)φνξ
]
.

(6.2)

Using Aφξν = 0 and Aξν = βξν , together with φφνξ = φ2ξν = −ξν + η(ξν)ξ =
−ξν , then (6.2) becomes

0 = φAX + 2α(∇ξA)X −AφX + 2α(∇XA)ξ − 2αφX

+ (2α+ 3β)

3∑
ν=1

ην(X)φνξ − 3(2α+ β)

3∑
ν=1

ην(φX)ξν .
(6.3)

On the other hand, from the Codazzi equation and our assumption of MB

being Hopf, we get

2α(∇ξA)X = 2α(∇XA)ξ − αφX + α

3∑
ν=1

{
ην(X)φνξ − 3ην(φX)ξν

}
= 2α2φAX − 2αAφAX − αφX

+ α

3∑
ν=1

{
ην(X)φνξ − 3ην(φX)ξν

}
.

(6.4)

Merging (6.3) and (6.4), we have

0 = φAX −AφX − 3αφX + 4α2φAX − 4αAφAX

+ 3(α+ β)

3∑
ν=1

ην(X)φνξ − 3(3α+ β)

3∑
ν=1

ην(φX)ξν
(6.5)

for any tangent vector field X on TMB .
If we put X = ξ1 ∈ Tβ in (6.5) and take the inner product with φ1ξ, then

we have

(6.6) 4β(1 + α2) = 0.
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On the other hand, putting X = φ1ξ ∈ Tγ in (6.5) yields

βξ1 + 3αξ1 − 3(3α+ β)ξ1 = 0,

where we have used Aφ1ξ = 0 and φ2ξ1 = −ξ1. Since ξ1 is unit, this implies
β = −3α. Substituting this fact into (6.6) gives

−12α(1 + α2) = 0.

Since the Reeb function α of MB is non-vanishing, it makes a contradiction.
In fact, the Reeb function α of MB is given by

α =


√

2 tanh(
√

2r) on (T ∗B),√
2 on (H∗B),√
2 on (E),

respectively.
From these facts, we conclude that real hypersurfaces MB of types (T ∗B),

(HB∗) or (E) cannot satisfy the condition of generalized Killing structure Ja-
cobi. Therefore we obtain a non-existence theorem for the case ξ ∈ Q.

Summing up Lemma 4.1 and all the facts in Sections 5 and 6, we can assert
a non-existence result in our Main Theorem.
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