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A NOTE ON THE GENERALIZED VARIATIONAL
INEQUALITY WITH OPERATOR SOLUTIONS

Sangho Kum*

Abstract. In a series of papers [3, 4, 5], the author developed the
generalized vector variational inequality with operator solutions (in
short, GOVVI) by exploiting variational inequalities with operator
solutions (in short, OVVI) due to Domokos and Kolumbán [2]. In
this note, we give an extension of the previous work [4] in the set-
ting of Hausdorff locally convex spaces. To be more specific, we
present an existence of solutions of (GVVI) under the weak pseu-
domonotonicity introduced in Yu and Yao [7] within the framework
of (GOVVI).

1. Introduction

In a series of papers [3, 4, 5], the author developed the generalized
vector variational inequality with operator solutions (in short, GOVVI)
by exploiting variational inequalities with operator solutions (in short,
OVVI) due to Domokos and Kolumbán [2]. They designed (OVVI) to
provide a unified approach to several kinds of (VI) and (VVI) prob-
lems in Banach spaces, and successfully described those problems in a
wider context of (OVVI). Actually, motivated by the work of Domokos
and Kolumbán [2], in a former paper [3], the author proposed (GOVVI)
which extends (OVVI) into a multi-valued case under a standard pseudo-
monotonicity of the given operator. In a recent work [4], a more general
pseudomonotone operator was treated in a normed space. As a contin-
uation of works, in this note, we give an extension of the previous result
[4, Theorem 3.2] in the setting of Hausdorff locally convex space. To
be more specific, we present an existence of solutions of (GVVI) under
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the weak pseudomonotonicity introduced in Yu and Yao [7] within the
framework of (GOVVI).

2. Preliminaries

Let E, F be Hausdorff t.v.s., and let X be a nonempty convex subset
of E. Let C1 : X → F be a multifunction such that for each x ∈
X, C1(x) is a convex cone in F with int C1(x) 6= ∅ and C1(x) 6= F . Let
L(E,F ) be the space of all continuous linear operators from E to F
and T1 : X → L(E,F ) a multifunction. From now on, unless otherwise
specified, we work under the following settings:

Let X ′ be a nonempty convex subset of L(E,F ) and T : X ′ → E be
a multifunction. Let C : X ′ → F be a multifunction such that for each
f ∈ X ′, C(f) is a convex cone in F with 0 /∈ C(f). Then the generalized
variational inequalities with operator solutions (GOVVI) is defined as
follows:

Find f0 ∈ X ′ such that ∀f ∈ X ′,∃x ∈ T (f0) with 〈f − f0, x〉 /∈ C(f0).

Consider the multifunction T1 : X → L(E,F ). Then T1 is said to be
(1) weakly C1-pseudomonotone if ∀x, y ∈ X and ∀s ∈ T1(x), we have

〈s, y−x〉 /∈ −intC1(x) implies 〈t, y−x〉 /∈ −intC1(x) for some t ∈ T1(y);

(2) generalized hemicontinuous if for any x, y ∈ X, the multifunction

α 7→ 〈T1(x + α(y − x)), y − x〉, ∀α ∈ [0, 1]

is upper semicontinuous at 0+, where

〈T1(x + α(y − x)), y − x〉 = {〈s, y − x〉 | s ∈ T1(x + α(y − x))}.
In regard to monotonicity and continuity of T , two analogous defini-

tions to those of T1 in the above are necessary; T : X ′ → E is said to
be
(1)′ weakly C-pseudomonotone if for any f, g ∈ X ′ and for any s ∈ T (f),

〈g − f, s〉 /∈ C(f) implies 〈g − f, t〉 /∈ C(f) for some t ∈ T (g); and

(2)′ generalized hemicontinuous if for any f, g ∈ X ′, the multifunction

α 7→ 〈g − f, T (f + α(g − f))〉, ∀α ∈ [0, 1]

is upper semicontinuous at 0+, where

〈g − f, T (f + α(g − f))〉 = {〈g − f, s〉 | s ∈ T (f + α(g − f))}.
Recall that a locally convex space (in short, l.c.s.) E is said to be

bornological if every circled, convex subset A ⊂ E which absorbs every
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bounded set in E is a neighborhood of 0. Equivalently, a bornological
space is a l.c.s. on which each seminorm that is bounded on bounded
sets, is continuous. Now, we introduce a fixed-point theorem [6], origi-
nally established in [1], which plays the role of a basic tool to derive our
main result.

Lemma 2.1. Let X be a nonempty convex subset of a locally convex
space E. Let S, V : X → X be two multifunctions. Suppose that

(i) for each x ∈ X, S(x) 6= ∅;
(ii) for each x ∈ X, coS(x) ⊂ V (x) where coS(x) stands for the convex
hull of S(x);
(iii) X =

⋃
{intXS−1(z) | z ∈ X};

(iv) the image V (X) of the map V is contained in a compact subset D
of X.
Then V has a fixed point x0 ∈ X; that is, x0 ∈ V (x0).

3. Main result

We begin with the following lemma in [4, Lemma 3.1] without proof.

Lemma 3.1. Let T : X ′ → E be a weakly C-pseudomonotone and
generalized hemicontinuous multifunction with T (f) 6= ∅ for all f ∈
X ′. Let W : X ′ → F be defined by W (f) = F \ C(f) such that the
graph Gr(W ) of W is closed in X ′ × F where L(E,F ) is endowed with
either the topology of pointwise convergence or the topology of bounded
convergence. Then the following two problems are equivalent:

(i) Find f ∈ X ′ such that ∀g ∈ X ′, ∃x ∈ T (f) with 〈g − f, x〉 /∈ C(f).
(ii) Find f ∈ X ′ such that ∀g ∈ X ′, ∃x ∈ T (g) with 〈g− f, x〉 /∈ C(f).

Theorem 3.2. Let X ′ be a nonempty convex subset of L(E,F ) en-
dowed with the topology of bounded convergence. Let T : X ′ → E
be a weakly C-pseudomonotone and generalized hemicontinuous multi-
function such that T (f) is nonempty and compact for all f ∈ X ′. Let
W : X ′ → F be defined by W (f) = F \C(f) such that the graph Gr(W )
of W is closed in X ′×F . Assume that there exists a compact subset D
of X ′ satisfying

{g ∈ X ′ | ∃f ∈ X ′ such that ∀x ∈ T (f), 〈g − f, x〉 ∈ C(f)} ⊂ D. (1)

Then (GOVVI) is solvable.
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Proof. First note that L(E,F ) equipped with the topology of bounded
convergence is a locally convex space. We define two multifunctions
S, V : X ′ → X ′ to be

S(f) : = {g ∈ X ′ | ∀x ∈ T (g), 〈g − f, x〉 ∈ C(f)},
V (f) : = {g ∈ X ′ | ∀x ∈ T (f), 〈g − f, x〉 ∈ C(f)}.

The proof is organized in the following parts.
(i) It is clear that for each f ∈ X ′, V (f) is convex.
(ii) Since T is weakly C-pseudomonotone, we have S(f) ⊂ V (f). By (i),
we have coS(f) ⊂ V (f) for all f ∈ X ′.
(iii) V has no fixed point because 0 /∈ C(f) for all f ∈ X ′.
(iv) For each g ∈ X ′, S−1(g) is open in X ′. In fact, let {fλ} be a net
in (S−1(g))c convergent to f ∈ X ′. Then g /∈ S(fλ) and hence for some
xλ ∈ T (g),

〈g − fλ, xλ〉 /∈ C(fλ).
Thus 〈g − fλ, xλ〉 ∈ W (fλ). As T (g) is compact, we may assume that
xλ → x for some x ∈ T (g). Since L(E,F ) is endowed with the topology
of bounded convergence and T (g) is compact, 〈g − fλ, xλ〉 → 〈g − f, x〉.
By virtue of the closedness of Gr(W ), we have (f, 〈g − f, x〉) ∈ Gr(W ),
that is, 〈g − f, x〉 /∈ C(f) for the particular x ∈ T (g). Hence g /∈ S(f),
so f ∈ (S−1(g))c. This shows that (S−1(g))c is closed, i.e., S−1(g) is
open in X ′. Thus X ′ =

⋃
{intX′S−1(g) | g ∈ X ′}.

(v) By (1), we have V (X ′) ⊂ D.
(vi) From (i)-(v), we see, by Lemma 2.1, there must be an f0 ∈ X ′ such
that S(f0) = ∅, namely,

∀g ∈ X ′, ∃x ∈ T (g) such that 〈g − f0, x〉 /∈ C(f0).

It follows from Lemma 3.1 that f0 is a solution of (GOVVI). This com-
pletes the proof.

As a direct consequence of Theorem 3.2, the following generalized VVI
in a locally convex space is derived, which is a generalization of the
corresponding Theorem 3.2 in [4].

Theorem 3.3. Let Y be a bornological l.c.s. and let Z be a Hausdorff
l.c.s. Let X be a nonempty convex subset of Y and C1 : X → Z be a
multifunction such that for each x ∈ X, C1(x) is a convex cone in Z
with intC1(x) 6= ∅ and C1(x) 6= Z. Let T1 : X → L(Y, Z) be a weakly
C1-pseudomonotone and generalized hemicontinuous multifunction with
nonempty compact values where L(Y, Z) is the Hausdorff l.c.s. equipped
with the topology of bounded convergence. Let W1 : X → Z be defined
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by W1(x) = Z \ −intC1(x) such that the graph Gr(W1) of W1 is closed
in X ×Z. Assume that there exists a compact subset D of X satisfying

{x ∈ X | ∃y ∈ X such that ∀t ∈ T1(y), 〈t, x− y〉 ∈ C1(y)} ⊂ D. (2)

Then there exists x0 ∈ X such that

∀x ∈ X, ∃t ∈ T1(x0) with 〈t, x− x0〉 /∈ −intC1(x0).

Proof. We consider E = L(Y, Z) as the Hausdorff l.c.s. of the contin-
uous linear operators between Y and Z equipped with the topology of
bounded convergence, and F = Z. Define a mapping φ : Y → L(E,F )
by φ(x) = fx where fx(l) = 〈l, x〉 for all l ∈ E. This φ is linear
and injective. Indeed, assume that li → l in E. This implies that
∀x ∈ Y, 〈li, x〉 → 〈l, x〉 in F = Z. Thus fx(li) → fx(l) in F , so
fx ∈ L(E,F ). The linearity of φ is obvious. To show the injectivity
of φ, it suffices to check that for each nonzero x ∈ Y , there exists an
l ∈ E such that 〈l, x〉 6= 0. By the separation theorem, we can find a
g ∈ Y ∗ with g(x) = 1. Define a linear operator l : Y → Z by

〈l, y〉 = g(y)z0 for some z0 6= 0 in Z.

Clearly l ∈ L(Y, Z) and 〈l, x〉 = g(x)z0 = z0 6= 0. Now let X ′ = φ(X)
and D′ = φ(D). Suppose that L(E,F ) is equipped with the topology of
bounded convergence. Then φ : Y → φ(Y ) is a homeomorphism by the
proof of Theorem 3.4 in [5].
Now we define T : X ′ → E, C : X ′ → F and W : X ′ → F as follows:

T (fx) = T1(x), C(fx) = −intC1(x), W (fx) = W1(x).

Then 0 /∈ C(fx) because intC1(x) is a proper convex cone of Z. The
proof is organized in the following parts.
(i) The weak C1-pseudomonotonicity of T1 implies the weak C-pseudomo-
notonicity of T . In fact, for any fx, fy ∈ X ′ and s ∈ T (fx) = T1(x),

〈fy − fx, s〉 /∈ C(fx) ⇒ 〈s, y − x〉 /∈ −intC1(x)
⇒ 〈t, y − x〉 /∈ −intC1(x) for some t ∈ T1(y)
⇒ 〈fy − fx, t〉 /∈ C(fx) for some t ∈ T (fy).

(ii) The generalized hemicontinuity of T1 amounts to that of T . Actually,
for any fx, fy ∈ X ′ and α ∈ [0, 1],

α 7→ 〈fy − fx, T (fx + α(fy − fx))〉 = 〈T1(x + α(y − x)), y − x〉
is upper semicontinuous at 0+.
(iii) By the hypothesis, T (fx) = T1(x) is nonempty and compact.
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(iv) The graph Gr(W ) of W is closed in X ′ × F . Indeed, let {fxi} be a
sequence in X ′ convergent to fx ∈ X ′. Let wi ∈ W (fxi) = W1(xi) such
that wi → w in F . Since φ is a homeomorphism, φ−1(fxi) = xi → x =
φ−1(fx). Because the graph Gr(W1) of W1 is closed in X × Z, we have
w ∈ W1(x) = W (fx). This implies that Gr(W ) is closed in X ′ × F .
(v) By (2), we see that

{fx ∈ X ′ | ∃fy ∈ X ′ s.t. ∀t ∈ T (fy), 〈fx−fy, t〉 ∈ C(fy)} ⊂ D′ = φ(D).

It follows from Theorem 3.1 that there exists fx0 ∈ X ′ such that for
each fx ∈ X ′, there is t ∈ T (fx0) with 〈fx − fx0 , t〉 /∈ C(fx0). Therefore,
there exists x0 ∈ X such that

∀x ∈ X, ∃t ∈ T1(x0) with 〈t, x− x0〉 /∈ −intC1(x0).

This completes the proof.
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