• Title/Summary/Keyword: generalized matrix algebra

Search Result 20, Processing Time 0.018 seconds

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

ON GENERALIZED GRADED CROSSED PRODUCTS AND KUMMER SUBFIELDS OF SIMPLE ALGEBRAS

  • Bennis, Driss;Mounirh, Karim;Taraza, Fouad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.939-959
    • /
    • 2019
  • Using generalized graded crossed products, we give necessary and sufficient conditions for a simple algebra over a Henselian valued field (under some hypotheses) to have Kummer subfields. This study generalizes some known works. We also study many properties of generalized graded crossed products and conditions for embedding a graded simple algebra into a matrix algebra of a graded division ring.

ADDITIVITY OF JORDAN TRIPLE PRODUCT HOMOMORPHISMS ON GENERALIZED MATRIX ALGEBRAS

  • Kim, Sang Og;Park, Choonkil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2027-2034
    • /
    • 2013
  • In this article, it is proved that under some conditions every bijective Jordan triple product homomorphism from generalized matrix algebras onto rings is additive. As a corollary, we obtain that every bijective Jordan triple product homomorphism from $M_n(\mathcal{A})$ ($\mathcal{A}$ is not necessarily a prime algebra) onto an arbitrary ring $\mathcal{R}^{\prime}$ is additive.

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

(CO)HOMOLOGY OF A GENERALIZED MATRIX BANACH ALGEBRA

  • M. Akbari;F. Habibian
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • In this paper, we show that bounded Hochschild homology and cohomology of associated matrix Banach algebra 𝔊(𝔄, R, S, 𝔅) to a Morita context 𝔐(𝔄, R, S, 𝔅, { }, [ ]) are isomorphic to those of the Banach algebra 𝔄. Consequently, we indicate that the n-amenability and simplicial triviality of 𝔊(𝔄, R, S, 𝔅) are equivalent to the n-amenability and simplicial triviality of 𝔄.

Complete Reducibility of some Modules for a Generalized Kac Moody Lie Algebra

  • Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.195-201
    • /
    • 1992
  • Let G(A) denote a generalized Kac Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. In this paper, we study on representations of G(A). Highest weight modules and the category O are described. In the main theorem we show that some G(A) modules from the category O are completely reducible. Also a criterion for irreducibility of highest weight modules is obtained. This was proved in [3] for the case of Kac Moody Lie algebras.

  • PDF

THE TENSOR PRODUCT OF AN ODD SPHERICAL NON-COMMUTATIVE TORUS WITH A CUNTZ ALGEBRA

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.151-161
    • /
    • 1998
  • The odd spherical non-commutative tori $\mathbb{S}_{\omega}$ were defined in [2]. Assume that no non-trivial matrix algebra can be factored out of $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_{km}(\mathbb{C})$. It is shown that the tensor product of $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has the trivial bundle structure if and, only if km and 2d - 1 are relatively prime, and that the tensor product of $\mathbb{S}_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when km > 1.

  • PDF

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF