• 제목/요약/키워드: generalized hypergeometric functions

검색결과 111건 처리시간 0.027초

Generalized Incomplete Pochhammer Symbols and Their Applications to Hypergeometric Functions

  • Sahai, Vivek;Verma, Ashish
    • Kyungpook Mathematical Journal
    • /
    • 제58권1호
    • /
    • pp.67-79
    • /
    • 2018
  • In this paper, we present new generalized incomplete Pochhammer symbols and using this we introduce the extended generalized incomplete hypergeometric functions. We derive certain properties, generating functions and reduction formulas of these extended generalized incomplete hypergeometric functions. Special cases of this extended generalized incomplete hypergeometric functions are also discussed.

EXTENDED HYPERGEOMETRIC FUNCTIONS OF TWO AND THREE VARIABLES

  • AGARWAL, PRAVEEN;CHOI, JUNESANG;JAIN, SHILPI
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.403-414
    • /
    • 2015
  • Extensions of some classical special functions, for example, Beta function B(x, y) and generalized hypergeometric functions $_pF_q$ have been actively investigated and found diverse applications. In recent years, several extensions for B(x, y) and $_pF_q$ have been established by many authors in various ways. Here, we aim to generalize Appell's hypergeometric functions of two variables and Lauricella's hypergeometric function of three variables by using the extended generalized beta type function $B_p^{({\alpha},{\beta};m)}$ (x, y). Then some properties of the extended generalized Appell's hypergeometric functions and Lauricella's hypergeometric functions are investigated.

EXTENSIONS OF MULTIPLE LAURICELLA AND HUMBERT'S CONFLUENT HYPERGEOMETRIC FUNCTIONS THROUGH A HIGHLY GENERALIZED POCHHAMMER SYMBOL AND THEIR RELATED PROPERTIES

  • Ritu Agarwal;Junesang Choi;Naveen Kumar;Rakesh K. Parmar
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.575-591
    • /
    • 2023
  • Motivated by several generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials, by choosing to use a very generalized Pochhammer symbol, we aim to introduce certain extensions of the generalized Lauricella function F(n)A and the Humbert's confluent hypergeometric function Ψ(n) of n variables with, as their respective particular cases, the second Appell hypergeometric function F2 and the generalized Humbert's confluent hypergeometric functions Ψ2 and investigate their several properties including, for example, various integral representations, finite summation formulas with an s-fold sum and integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions. Also, pertinent links between the major identities discussed in this article and different (existing or novel) findings are revealed.

DECOMPOSITION FORMULAE FOR GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE GAUSS-KUMMER IDENTITY

  • Hayashi, Naoya;Matsui, Yutaka
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.97-108
    • /
    • 2014
  • In the theory of special functions, it is important to study some formulae describing hypergeometric functions with other hypergeometric functions. In this paper, we give some methods to obtain a lot of decomposition formulae for generalized hypergeometric functions.

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

ON GENERALIZED WRIGHT'S HYPERGEOMETRIC FUNCTIONS AND FRACTIONAL CALCULUS OPERATORS

  • Raina, R.K.
    • East Asian mathematical journal
    • /
    • 제21권2호
    • /
    • pp.191-203
    • /
    • 2005
  • In the present paper we first establish some basic results for a substantially more general class of functions defined below. The results include simple differentiation and fractional calculus operators(integration and differentiation of arbitrary orders) for this class of functions. These results are then invoked in determining similar properties for the generalized Wright's hypergeometric functions. Further, norm estimate of a certain class of integral operators whose kernel involves the generalized Wright's hypergeometric function, and its composition(and other related properties) with the fractional calculus operators are also investigated.

  • PDF

THE INCOMPLETE GENERALIZED τ-HYPERGEOMETRIC AND SECOND τ-APPELL FUNCTIONS

  • Parmar, Rakesh Kumar;Saxena, Ram Kishore
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.363-379
    • /
    • 2016
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] and the second Appell function [Appl. Math. Comput. 219 (2013), 8332-8337] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we introduce here the family of the incomplete generalized ${\tau}$-hypergeometric functions $2{\gamma}_1^{\tau}(z)$ and $2{\Gamma}_1^{\tau}(z)$. The main object of this paper is to study these extensions and investigate their several properties including, for example, their integral representations, derivative formulas, Euler-Beta transform and associated with certain fractional calculus operators. Further, we introduce and investigate the family of incomplete second ${\tau}$-Appell hypergeometric functions ${\Gamma}_2^{{\tau}_1,{\tau}_2}$ and ${\gamma}_2^{{\tau}_1,{\tau}_2}$ of two variables. Relevant connections of certain special cases of the main results presented here with some known identities are also pointed out.

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.