• 제목/요약/키워드: generalized approximate function

검색결과 45건 처리시간 0.031초

e-SVR using IRWLS Procedure

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1087-1094
    • /
    • 2005
  • e-insensitive support vector regression(e-SVR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the quadratic problem of e-SVR with a modified loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of e-SVR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for e-SVR.

  • PDF

Support vector quantile regression for longitudinal data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.309-316
    • /
    • 2010
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

Censored Kernel Ridge Regression

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1045-1052
    • /
    • 2005
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The weighted data are formed by redistributing the weights of the censored data to the uncensored data. Then kernel ridge regression can be taken up with the weighted data. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized approximate cross validation(GACV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

  • PDF

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

Moment of the ratio and approximate MLEs of parameters in a bivariate Pareto distribution

  • Kim, Jungdae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1213-1222
    • /
    • 2012
  • We shall derive the moment of the ratio Y/(X + Y) and the reliability P(X < Y ), and then observe the skewness of the ratio in a bivariate Pareto density function of (X, Y). And we shall consider an approximate MLE of parameters in the bivariate Pareto density function.

Estimating Variance Function with Kernel Machine

  • Kim, Jong-Tae;Hwang, Chang-Ha;Park, Hye-Jung;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.383-388
    • /
    • 2009
  • In this paper we propose a variance function estimation method based on kernel trick for replicated data or data consisted of sample variances. Newton-Raphson method is used to obtain associated parameter vector. Furthermore, the generalized approximate cross validation function is introduced to select the hyper-parameters which affect the performance of the proposed variance function estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

An approximate maximum likelihood estimator in a weighted exponential distribution

  • Lee, Jang-Choon;Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.219-225
    • /
    • 2012
  • We derive approximate maximum likelihood estimators of two parameters in a weighted exponential distribution, and derive the density function for the ratio Y=(X+Y) of two independent weighted exponential random variables X and Y, and then observe the skewness of the ratio density.

Semisupervised support vector quantile regression

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.517-524
    • /
    • 2015
  • Unlabeled examples are easier and less expensive to be obtained than labeled examples. In this paper semisupervised approach is used to utilize such examples in an effort to enhance the predictive performance of nonlinear quantile regression problems. We propose a semisupervised quantile regression method named semisupervised support vector quantile regression, which is based on support vector machine. A generalized approximate cross validation method is used to choose the hyper-parameters that affect the performance of estimator. The experimental results confirm the successful performance of the proposed S2SVQR.

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.