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Abstract

Partially linear regression is capable of providing more complete description of the
linear and nonlinear relationships among random variables. In support vector regression
(SVR) the hyper-parameters are known to affect the performance of regression. In this
paper we propose an iterative reweighted least squares (IRWLS) procedure to solve
the quadratic problem of partially linear support vector regression with a modified loss
function, which enables us to use the generalized approximate cross validation function
to select the hyper-parameters. Experimental results are then presented which illustrate
the performance of the partially linear SVR using IRWLS procedure.

Keywords: Generalized approximate cross validation function, iterative reweighted least
squares procedure, partially linear regression, support vector regression.

1. Introduction

Support vector machine (SVM), firstly developed by Vapnik (1995, 1998), is being used as a
new technique for regression and classification problems. SVM is based on the structural risk
minimization (SRM) principle, which has been shown to be superior to traditional empirical
risk minimization (ERM) principle. SRM minimizes an upper bound on the expected risk
unlike ERM minimizing the error on the training data. By minimizing this bound, high
generalization performance can be achieved. In particular, for the SVM regression case SRM
results in the regularized ERM with the e-insensitive loss function. The introductions and
overviews of recent developments of SVM regression can be found in Cho et al. (2010),
Hwang (2010), Shim et al. (2011), Smola and Schölkopf (1998), Vapnik (1995, 1998), and
Wang (2005).

Training an SVR requires the solution to a quadratic programming (QP) optimization
problem. But QP problem presents some inherent limitations which results in computational
difficulty especially for the large data sets. Platt (1998) developed the sequential minimal
optimization algorithm which divides the QP problem into a series of small QP problems
to avoid such computational difficulty. Perez-Cruz et al. (2000) proposed IRWLS algorithm
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for SVR by transforming the Lagrangian function into sum of quadratic terms by defining
associated weights of predicted errors.

In this paper, we consider the partially linear regression case where the input vector in-
cluded in the linear part of the regression function is assumed to be known to have the
linear effect on the response variable and the input vector included in the nonlinear part of
the regression function is assumed to be known to have the nonlinear effect on the response
variable. We propose an IRWLS procedure to solve the QP problem of partially linear SVR
(PLSVR) with a modified loss function of which original version is e-insensitive loss func-
tion used by Vapnik (1995, 1998). The modified loss function is attained by providing the
differentiability at ± e, which enables to solve QP problem by IRWLS procedure. To select
appropriate hyper-parameters, a commonly used method is minimizing the cross validation
(CV) function. Nychka et al. (1995) proposed the approximate cross validation (ACV) func-
tion for quantile spline estimation. This technique can be easily applied to PLSVR using
IRWLS procedure. And by replacing each element of hat matrix by the average of trace
of hat matix, the GACV function also can be obtained. GACV function is used to select
hyper-parameters for the achievement of high generalization performance.

The rest of this paper is organized as follows. In Section 2 we give a review of PLSVR.
In Section 3 we propose an IRWLS procedure for PLSVR and present the model selection
method using GACV function which is a good approximate of the generalized comparative
Kullback-Leibler distance (Wahba et al., 1999). In Section 4 we perform the numerical studies
through examples. In Section 5 we give the conclusions.

2. Partially linear SVR

Let the training data set denoted by {xi, zi, yi}ni=1, with each input vector xi ∈ Rd1 ,
zi ∈ Rd2 and the response yi ∈ R, where the output variable is assumed to be linearly
related to the input vector xi and nonlinearly related to the input vector zi. Here the feature
mapping function φ(·) : Rd2 → Rdf maps the input space to the higher dimensional feature
space where the dimension df is defined in an implicit way. It is known that φ(zi)

′φ(zj) =
K(zi, zj) which are obtained from the application of Mercer’s (1909) conditions. We consider
the partially linear regression case, in which the regression function of the response given x
and z, µ(x, z), can be regarded as a partially linear function of input vector x and z such

that µ(x, z) = w′1x+w′2φ(z)+b = w′φ(x, z)+b, where w =

(
w1

w2

)
and φ(x, z) =

(
x

φ(z)

)
.

In the nonlinear case, w2 is no longer explicitly given. However, it is uniquely defined in the
weak sense by the dot products. Here the linear regression model can be regarded as the
special case of the nonlinear regression model by using identity feature mapping function,
that is, φ(z) = z which implies the linear kernel such that K(z, z) = z′z.

With e-insensitive loss function `e, the estimator of the regression function can be defined
as any solution to the optimization problem,

min
1

2
w′w + C

n∑
i=1

`e(yi − µ(xi, zi)), (2.1)

where C > 0 is a penalty parameter penalizing the training errors, `e(r) = 0 if |r| ≤ e and
`e(r) = |r| − e if |r| > e. We can express the regression problem by formulation for SVM as
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follows:

min
1

2
w′w + C

n∑
i=1

(ξi + ξ∗i ) (2.2)

subject to

yi −w′φ(xi, zi)− b ≤ e+ ξi (2.3)

w′φ(xi, zi) + b− yi ≤ e+ ξ∗i , e, ξi, ξ
∗
i ≥ 0.

We construct a Lagrange function as follows:

L =
1

2
w′w + C

n∑
i=1

(ξi + ξ∗i )−
n∑
i=1

αi(e+ ξi − yi +w′φ(xi, zi) + b) (2.4)

−
n∑
i=1

α∗i (e+ ξ∗i + yi −w′φ(xi, zi)− b)−
n∑
i=1

(ηiξi + η∗i ξ
∗
i ).

We notice that the positivity constraints αi, α
∗
i , ηi, η

∗
i ≥ 0 should be satisfied. Taking

partial derivatives of (2.4) with regard to the primal variables (w, b, ξi, ξ
∗
i ) we have,

∂L

∂w
=0→ w =

n∑
i=1

(αi − α∗i )φ(xi, zi),

∂L

∂b
=0→

n∑
i=1

(αi − α∗i ) = 0, (2.5)

∂L

∂ξ
(∗)
i

=0→ C − α(∗)
i − η

(∗)
i = 0.

Plugging (2.5) into (2.4), we have the optimization problem as follows;

max −
1

2

n∑
i,j=1

(αi−α∗i )(αj−α∗j )(x′ixj+K(xi,xj))+

n∑
i=1

(αi − α∗i )yi − e
n∑
i

(αi + α∗i ) (2.6)

with constraints 0 ≤ α(∗)
i ≤ C, where the data points corresponding to positive values of αi

or α∗i are called support vectors. Solving the above equation with the constraints determines
the optimal Lagrange multipliers, αi, α

∗
i , the estimator of the regression function given the

input vector xt and zt is obtained as follows;

µ̂(xt, zt) =

n∑
i=1

(α̂i − α̂i∗)(x′ixt +K(zi, zt)) + b̂. (2.7)

Here b̂ is obtained by KKT (Karush-Kuhn-Tucker, Kuhn and Tucker, 1951) conditions as
follows;

b̂ =
1

ns

∑
i∈Is

(yi − (x′ix
′ +K(xi,x))(α̂− α̂∗)), (2.8)

where ns is the size of Is = {i = 1, · · · , n|0 < α̂i < C, 0 < α̂i
∗ < C}.



394 Jooyong Shim · Kyungha Seok

3. Partially linear SVR using IRWLS procedure

Hyper-parameters are the penalty parameter and kernel parameter included in the kernel.
The penalty parameter play an important role on determining the tradeoff between the
goodness-of-fit on the data and ||ω||2. When it is too small, there is too much penalty placed
on the estimate, which leads underfitting. Or when it is too large, we tend to interpolate
the data more and this will lead to overfitting. The kernel parameter is also known to be
related underfitting and overfitting. The main goal of model selection is to choose hyper-
parameters such that the distance between the resulting estimate and the true regression
function is minimized (the generalized comparative Kullback-Leibler distance, Wahba et
al., 1999). Since the true regression function and the error distribution are not known, the
distance cannot be directly obtained. One popular proxy is the leave-one-out cross-validation
defined as follows;

CV (λ) =
1

n

n∑
i=1

`e(yi − µ̂(−i)(xi, zi)) (3.1)

where λ is the set of parameters and µ̂(−i)(xi, zi) is the regression function estimated
without i th observation. Since for each candidates of hyper-parameters, µ̂(−i)(xi, zi) for
i = 1, · · · , n, should be evaluated, selecting hyper-parameters using CV function is compu-
tationally formidable. If µ̂(xi, zi) can be expressed as the linear product of the hat matrix
and y, the generalized approximate cross validation (GACV) function can be written as
follows by Yuan (2006);

GACV (λ) =
1

n− tr(H)

n∑
i=1

`e(yi − µ̂(xi, zi)), (3.2)

where H is the hat matrix such that µ̂(x, z) = Hy.
In fact we cannot use GACV function (3.2) with the estimator of the regression function

(2.8). One reason is that the e-insensitive loss function `e(r) is not differentiable with respect
to r at ± e. We use the approximate of e-insensitive loss function, `e,δ(r), which is attained by
providing the differentiability at ± e by differing from the original e-insensitive loss function
in the small intervals (−e− δ,−e+ δ) and (e− δ, e+ δ) as follows:

`e,δ(r) =



−r + e if r ≤ −e− δ,
r2−(e−δ)2

4e if − e− δ < r ≤ −e+ δ,

0 if − e+ δ < r ≤ e− δ,
r2−(e−δ)2

4e if e− δ < r ≤ e+ δ,

r − e if r > e+ δ.

(3.3)

Now the problem (2.1) becomes obtaining (β, b) to minimize

L(β, b) =
1

2
β′K̃β + C

n∑
i=1

`e,δ(yi − K̃iβ − b), (3.4)

where K̃ = xx′ +K(z, z) and K̃i is the i th row of K̃.
Taking partial derivatives of (3.4) with regard to (β, b) leads to the optimal values of (β, b)

to be the solution to
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0 =K̃β − CK̃W (y − K̃β − 1b) (3.5)

0 =1′W (y − K̃β − 1b).

Here W is a diagonal matrix composed of wii ’s obtained from the derivative of the modified
asymmetric e-insensitive loss function as follows;

wii =



− 1
ri

if ri ≤ −e− δ,
1
2e if − e− δ < ri ≤ −e+ δ,

0 if− e+ δ < ri ≤ e− δ,
1
2e if e− δ < ri ≤ e+ δ,
1
ri

if ri > e+ δ.

(3.6)

where ri = yi − K̃iβ − b. The e-insensitive loss function, the modified e-insensitive loss
function and the derivative of the modified e-insensitive loss function are illustrated in
Figure 3.1 with e = 0.2 and δ = 0.05. The solution to (3.5) can be obtained with W which is

composed of the values of (β, b) obtained in previous steps. Thus, µ̂(xi, zi) = K̃iβ + b, i =
1, · · · , n, can be estimated using IRWLS procedure as follows;

(0) Set (β(0), b(0)).

(i) Calculate W using prespecfied e, δ and ri = yi − K̃iβ
(t) − b(t).

(ii) Obtain (β(t+1), b(t+1))from

(
β(t+1)

b(t+1)

)
=

(
WK̃ + I/C W1

1′WK̃ 1′W1

)−1(
W
1′W

)
y. (3.7)

(iii) Iterate steps (i) and (ii) until convergence.

The hat matrix H which can be used in GACV function (2.8) is obtained as follows;

H = (K̃,1)

(
WK̃ + I/C W

1′WK̃ 1′W1

)−1(
W
1′W

)
, (3.8)

where W is composed of the final estimated values of (β, b).

Figure 3.1 0.2-insensitive loss function (solid line), the modified 0.2-insensitive loss function (dashed line)
(Left) and the derivative of the modified 0.2-insensitive loss function (Right) with δ =0.05
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4. Numerical studies

We illustrate the performance of the regression estimation using PLSVR using IRWLS
through the simulated example on the partially linear regression cases. 100 data sets are
generated, where each data set consists of 200 (x, z)’s and 200 y’s. Here x’s are equally
spaced ranging from 0 to 1, z’s are generated from a uniform U(0, 1) distribution and
y’s are generated from Laplace distribution L(x + sin(2πz), 1) and the normal distribu-
tion N(x+ sin(2πz), 2). The regression function a given (x, z) can be modelled as µ(x, z) =
w1x + w2φ(z) + b. True regression function is given as f(x, z) = x + sin(2πz). One of 100
datasets with Laplacian errors is shown in Figure 4.1, where true regression functions are
superimposed on the scatter plots of y versus x and z.

Figure 4.1 The true regression functions superimposed on the scatter plots of y versus x (Left)
and z (Right) with Laplacian errors (Upper) and normal errors (Lower)

We set δ in the modified loss function (3.3) to 0.01 and e to 0.1. The radial basis kernel
function is utilized in this example, which is,

K(z1, z2) = exp(−
1

σ2
(z1 − z2)2).

We consider the generalized comparative Kullback-Leibler distance (GCKL distance; Wahba
et al., 1999) as follows;

GCKL(λ) =
1

n

n∑
i=1

Ey[`e(yi − µ̂i)],

where µ̂i = µ̂(xi, zi). The assumption of the Laplace distribution of errors provides a closed
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form of GCKL distance as follows;

1

n

n∑
i=1

Ey[`e(yi − µ̂i)] =
1

n

n∑
i=1

Er[`e(ri + di)]

=
1

n

n∑
i=1

Er[(ri + di − e)1(ri + di > e) + (−ri − di − e)1(ri + di < −e)]

=
1

n

n∑
i=1

Er[(ri + di − e)1(ri > −di + e)]−
1

n

n∑
i=1

Er[(ri + di + e)1(ri < −di − e)]

=
1

n

n∑
i=1

Er[ri1(ri > −di + e)] +
1

n

n∑
i=1

(di − e)P (ri > −di + e)

−
1

n

n∑
i=1

Er[ri1(ri < −di − e)]−
1

n

n∑
i=1

(di + e)P (ri < −di − e)

=
1

2n

n∑
i=1

exp(−|di − e|)[(1 + di − e)1(−di + e < 0) + (1− di + e)1(−di + e ≥ 0)]

+
1

2n

n∑
i=1

(di − e)(exp(−|di − e|)− 1(di − e < 0))

+
1

2n

n∑
i=1

exp(−|di + e|)[(1 + di + e)1(di + e ≥ 0) + (1− di − e)1(di + e < 0)]

+
1

2n

n∑
i=1

(di + e)(exp(−|di + e|)− 1(di + e < 0))

where ri = yi − µi and di = µi − µ̂i. The assumption of the standard normal distribution of
errors provides a closed form of GCKL distance as follows;

1

n
Ey[`e(yi − µ̂i)] =

1

n

n∑
i=1

f(−di + e)

1− F (−di + e)
+

1

n

n∑
i=1

(di − e)(1− F (−di + e))

+
1

n

n∑
i=1

f(−di − e)
F (−di − e)

−
1

n

n∑
i=1

(di + e)F (−di − e),

where f is the probability density function and F is the cumulative distribution function of
the standard normal distribution.

GCKL distances together with GACV functions were evaluated for different values of
kernel parameter in the radial basis kernel function for fixed value of C=100. The 20 values
of kernel parameter are equally spaced in the interval [0.1, 2]. We averaged the values over
100 simulated datasets. Figure 4.2 (Left) presents the average values of GCKL distances
(solid lines) and GACV functions (dashed lines) versus the values of kernel parameter for
Laplacian errors, and Figure 4.2 (Right) is for normal errors. From the figure, we find that
the average GACV functions have similar pattern as the average GCKL distances, which
implies GACV function is a good estimate of GCKL distance.



398 Jooyong Shim · Kyungha Seok

Figure 4.2 The average GCKL distances (solid lines) and GACV functions (dashed lines) from 100
simulated datasets with Laplacian errors (Left) and normal errors (Right)

For the comparison of prediction performance of PLSVR using IRWLS procedure and
PLSVR using QP, we use one dataset for training and rest 99 datasets for test.

We select (C, σ2) as (10,0.3) and (100,0.5) for Laplacian and normal error case, respec-
tively, using GACV function (3.2). The predicted mean squared error (PMSE) is used as
prediction performance measure defined by

PMSE =
1

n

n∑
i=1

(µ̂i − µi)2.

The averages of 99 PMSEs from PLSVR using IRWLS procedure and QP are obtained as
0.0644 and 0.0666, respectively, (corresponding standard errors are 0.0039 and 0.0040) for
Laplacian errors, 0.0586 and 0.0647, respectively, (corresponding standard errors are 0.0042
and 0.0046) for normal errors, which implies that the proposed procedure provides almost
same prediction performance as PLSVR using QP. We can see that the proposed procedure
works generally well for the partially linear regression in model selection and prediction.

5. Conclusions

In this paper, we dealt with estimating the regression function by PLSVR using IRWLS
procedure and obtained GACV function for the proxy of GCKL distance. Through the ex-
amples we showed that the proposed procedure derives the satisfying solutions-easy model
selection and good prediction performance. We also found that PLSVR using IRWLS pro-
cedure is much faster than PLSVR using QP, which implies that the proposed procedure is
appropriate for the large training data sets. We showed the generalized approximate cross
validation function from PLSVR using IRWLS procedure is good approximate of GCKL
distance.
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