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Censored Kernel Ridge Regression 
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Abstract

This paper deals with the estimations of kernel ridge regression when 
the responses are subject to randomly right censoring. The weighted data 
are formed by redistributing the weights of the censored data to the 
uncensored data. Then kernel ridge regression can be taken up with the 
weighted data. The hyperparameters of model which affect the 
performance of the proposed procedure are selected by a generalized 
approximate cross validation(GACV) function. Experimental results are 
then presented which indicate the performance of the proposed procedure.

Keywords: Generalized approximate cross validation function, Kernel 
ridge regression, Randomly right censoring

1. Introduction

Regression model has been studied extensively with the data subject to 

randomly right censoring.  Koul et al.(1981) proposed a simple estimation in 

censored regression model by applying  the least square method on the weighted 

observations. Zhou(1992) proposed the M-estimators of regression parameter with 

the weights suggested by Koul et al.(1981). Yang(1999) proposed a censored 

median regression model as an alternative to the mean regression model for 

examining the input vector effect with the data subject to randomly right 

censoring and showed that the estimators are consistent and asymptotically 

distributed. Heuchenne and Keilegom(2005) proposed an estimation procedure which 

extends the least squares procedures for nonlinear regression with censored data.

Ridge regression(Hoerl and Kennard, 1970) is the classical statistical technique 

which implements a regularized form of the least squares regression. Kernel ridge 

regression(Saunders et al., 1998), which is a nonlinear form of ridge regression, is 
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developed by introducing kernel functions satisfying Mercer conditions(Mercer, 

1909). The least squares support vector machine(LS-SVM), a formulation of kernel 

ridge regression including a bias term has been proposed for classification and 

regression by Suykens and Vanderwalle(1999). In kernel ridge regression the 

solution is given by a linear system instead of a quadratic program problem. The 

fact that kernel ridge regression has an explicit formulations has a number of 

advantages. 

It is well known that the prediction performance of kernel ridge regression is 

affected the hyperparameters. We apply the cross-validation method(Green and 

Silverman, 1994) to kernel ridge regression for censored data. 

In this paper we present the estimation procedure of the nonlinear regressions 

by utilizing kernel ridge regression with the data subject to randomly right 

censoring. The rest of this paper is organized as follows.  In Section 2 we give a 

brief review of kernel ridge regression.  In Section 3 we present the estimation 

procedure of kernel ridge regression for the censored data and  GACV function for 

selecting hyperparameters. In Section 4  we perform the numerical studies through 

examples. In Section 5 we give the concluding remarks.

  

2.  Kernel Ridge Regression

Let the training data set be denoted by { x i,y i }
N
i=1
, with each input vector

x i ∈ R
d  including a constant 1 and the response y i∈R  which is the output 

corresponding to x i. For kernel ridge regression, we can assume the functional 

form of unknown mean function f  for given input vector x  by  f( x)= w'φ( x)   

where w  is an appropriate weight vector. Here the feature mapping function 

φ(⋅):R
d
→R

d f  maps the input space to the higher dimensional feature space 

where the dimension d f  is defined in an implicit way.  The optimization problem 

is defined with a regularization parameter C as 

minimize 1
2
w' w+

C
2 ∑

N

i=1
e 2i                           (1)

over { w, e }  subject to equality constraints, 

y i= w ' φ( x i) +e i , i=1,…,N.

The Lagrangian function can be constructed as
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L( w, e : α)=
1
2
w' w+ 

C
2 ∑

N

i=1
e 2i- ∑

N

i=1
α i( w'φ( x i) +e i-y i ),        (2)

where α i's are the Lagrange multipliers. The Karush-Kuhn-Tucker(Smola and 

Scholkopf, 1998) conditions for optimality are given by 

∂L

∂ w
= 0 → w= ∑

N

i=1
α iφ( x i)

∂L
∂e i

=0 → α i=Ce i , i=1,…,n

∂L
∂α i

=0 → w'φ( x i)+e i-y i =0 , i=1,…,n,

leading to the solution

α= ( K+C -1 I ) - 1 y                               (3)

with y= (y 1,…,y n)', α = ( α 1,…,α n )',  and K={K kl }  where K kl=

φ( x k )'φ( x l), k,l=1,…,n,  which are obtained from the application of Mercer's 

conditions(1909). Several choices of the kernel K(⋅,⋅)  fucntions are possible. 

From (3) the predicted mean function for the given x t  is obtained as 

                 f̂ ( x t )=K t α =K t (K+C
-1 I ) - 1 y                         (4)

where K t= { K( x t , x i ) } 
n
i=1 .

3. Kernel Ridge Regression for Censored Data  

Consider the linear regression model for the response variables 

t i, i=1,2,…,n,  

t i= x i α + ε i,                            (5)

where x i  is the input vector including a constant 1, α  is the regression 

parameter of the model, and ε i  's are unobservable errors assumed to be 

independent with zero means and bounded variances. c i's are the censoring 

variables assumed to be independent and identically distributed and follows a 

distribution with distribution function G( t )=P (c i≤t ).  t i   is not observed but 
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δ i = I ( t i <c i )  and   y i= min (t i,c i ),                   (6)

where  I (⋅)  denotes the indicator function. In most practical cases G  is not 

known and needs to be estimated by the Kaplan-Meier(1958) estimator or its 

variation.  The problem considered here is that of the estimation of α   based on 

( δ 1 ,y 1, x 1 ),…,(δ n,y n, x n ) . Koul et al.(1981) defined new observable 

responses y *i   as y
*
i= wt i y i   with wt i=

δ i
1-G(y i)

,  and showed y
*
i
 has 

the same mean as t i   and thus follows the same linear model as t i  does. 

Zhou(1992) proposed M-estimator of the regression parameter α  with a loss

 function ρ(⋅)  using the weights,

minimize ∑
n

i=1
wt iρ(y i- x i α).

We consider the similar weighting scheme as Zhou(1992) with quadratic loss 

function for censored nonlinear case, replacing the optimal problem (1) by

minimize 1
2
w' w+

C
2 ∑

N

i=1
wt ie

2
i
 ,                            (7)

which leads to the solution, 

α = ( KWK+ C -1K ) -1 KW y   with W= diag{wt }.                   (8)

The predicted mean function for the given x t  is obtained as 

f̂ ( x t )=K t α =K t (W KW+C
-1K ) - 1KW y .                      (9)

The functional structures of kernel ridge regression is characterized by 

hyperparameters - the regularization parameter C and the kernel parameters. We 

consider the cross validation(CV) function as follows:

CV( λ )=
1
n ∑

n

i=1
wt i (y i- f̂

( - i )
( x i | λ ) )

2
,

where λ  is a set of hyperparameters and f̂
( - i)
( x i | λ )  is the mean function 

estimated  without  i-th observation. Since for each candidates of  parameters, 
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f̂
( - i )
( x i | λ )  for i=1,…,n,  should be evaluated, selecting parameters using 

CV function is computationally formidable.  To select the smoothing parameter λ  

for the smoothing spline estimates Nychka et al. (1995) proposed the following 

approximate cross validation(ACV), 

ACV( λ )=
1
n ∑

n

i=1
ρ (
y i- f̂ ( x i | λ )

1-h i i ) ,

where ρ(⋅)  is a differentiable loss function and h ij= ∂ f̂ ( x i | λ )/ ∂y j .   Here 

h i i  can be replaced by their average tr(H)/n .

In censored kernel ridge regression  GACV function  can be described as

GACV( λ)=
n ∑

n

i=1
wt i (y i- f̂ ( x i | λ ) )

2

(n- tr(H) )
2 ,                      (10)

where H  is obtained from (8) as 

H=K(KWK+C -1K) - 1KW.                         (11)

4. Numerical Studies

We illustrate the performance of the censored regression estimation using kernel 

ridge regression through the simulated example on the nonlinear regression cases. 

For the training data set of the nonlinear censored  regression case, 100 of x's 

are generated from a uniform distribution, U(0,1) , and ( t,c)'s are generated as 

follows.

t i= sin (0.75πx)+0.5+ε t i, c i= sin (0.75πx)+0.5+ε c i, i= 1,…,100,

where ε t i's and ε c i's are generated from normal distributions, N( 0, 0.1)  and 

N(cc , 0.1) , respectively. cc  is chosen for 20% censoring proportion. For the 

testing data set, 100 of (x, t,c)'s are generated by the same way as for the 

training ata set. Then the mean function of t i  given x  can be modelled as

f( x)=sin (0.75πx)+0.5 .
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Solving the optimal problem of equation (7) with the weighted training data the 

optimal Lagrange multipliers, α i‘s can be obtained. Then by the equation (8) and 

(9), we have the predicted mean function given x. The Gaussian kernel is utilized 

in this example, which is

K( x 1 , x 2 )= exp (-
1

σ
2 ( x 1- x 2 )

2),

The regularization parameter C  and the kernel parameter σ
2  are obtained as 1.0 

and 0.9, respectively, from GACV function (10). 

The figure 1 shows true mean function(dotted line) and predicted mean 

function(solid line) for the training data and testing data, respectively. Uncensored 

data points are denoted by "ㆍ" and those by "o" are censored. In the figure we 

can see that the predicted mean function behaves similarly as the true mean 

function does.

Predicted mean squared error(PMSE) is used for the performance metric,

PMSE=
1
n t
∑
n t

i=1
( f̂ ( x t i )- f ( x t i ) )

2,

where x t i
 is the testing input vector, i=1,…,n t

. From 100 pairs of training 

and testing data sets we obtained the average of PMSEs as 0.0109, which 

indicates that the proposed procedure provide satisfying results.

Figure 1. The true and the predicted mean functions for training data (Left) and 

testing data(Right)
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Low-cycle fatigue data(Heuchenne and Keilegom, 2005) for a strain-controlled 

test on 26 cylindrical specimens of nikel-base superalloy, which include 4 censored 

data, are used for the next example. The polynomial kernel with degree 2  is 

utilized in this example. The regularization parameter C  is obtained as 800 from 

GACV function (10). Figure 2 shows that the logarithms of thousands of cycles 

before fatigue against pseudostress. The predicted mean functions for pseudostress 

between 80 and 85 by the proposed procedure show lower values than those by 

(Heuchenne and Keilegom, 2005).

Figure 2. The predicted mean functions for fatigue data by censored kernel ridge 

regression

5. Concluding Remarks

In this paper, we dealt with estimating the mean of the censored regression 

model using kernel ridge regression and obtained GACV function for the proposed 

procedure. By using GACV function the model selection becomes easier and faster 

than that by a leave-one-out cross validation. Through the example we showed 

that the proposed procedure derives the satisfying solutions and is attractive 

approaches to modelling of the censored data. We found that the model is not 

much sensitive to the choice of the regularization parameter but it is sensitive to 

the choice of the kernel parameter. Thus a consideration such as standardization 

of input vectors is required for the choice of the kernel parameter. 
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