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Abstract

Support vector. quantile-regression(SVQRY) is capable of providing more complete description of the linear
-and nonlinear relationships among random variables. "In this paper we propose an iterative reweighted least
squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore,
we introduce the generalized approximate cross validation function to select the hyperparameters which affect the

performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS
procedure for SVQR.
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1. Introduction

Quantile regression introduced by Koenker and Bassett (1978) is gradually involving into an ensemble
of practical statistical methods for estimating and conducting inference about models for conditional
quantile functions. Quantile regression is an increasingly popular method for estimating the quan-
tiles of a distribution conditional on the values of covariates. Regression quantiles are robust against
the influence of outliers and they give a more complete picture of the conditional distribution than a
single estimate of the center. Just as classical linear regression methods based on minimizing sum
of squared residuals enable one to estimate a wide variety of models for conditional mean functions,
quantile regression methods offer a mechanism for estimating models for the conditional median
function, and the full range of other conditional quantile functions. By supplementing the estimation
of conditional mean functions with techniques for estimating an entire family of conditional quan-
tile functions, quantile regression is capable of providing a more complete statistical analysis of the
stochastic relationships among random: variables. The introductions and current research areas of the
quantile regression can be found in Koenker and Hallock (2001), Yu et al. (2003) and Kim e al.
(2009).

The SVM, firstly developed by Vapnik (1995,1998), is being used as a new technique for regres-
sion and classification problems. SVM is gaining popularity due to many attractive features, and
promising empirical performance. SVM was initially developed to solve classification problems but
recently it has been extended to the domain of regression problems. SVM is based on the structural
risk minimization(SRM) principle, which minimizes an upper bound on the expected risk unlike the
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empirical risk minimization(ERM) minimizing the error on the training data. By minimizing this
bound, high generalization performance can be achieved. In particular, for the SVM regression case
SRM results in the regularized ERM with the e-insensitive loss function. The overviews and applica-
tions of SVM regression can be found in Vapnik (1995,1998), Smola and Schélkopf (1998) and Wang
(2005).

The minimization problem associated with linear quantile regression is in essence the linear pro-
gramming optimization problem, which is based on simplex algorithm or interior point algorithm. The
current state of algorithms for nonlinear quantilé regression is far less satisfactory. The widely used
algorithm is interior point algorithm. Nonlinear quantile regression poses new algorithmic challenge.
Refer to Koenker and Park (1996) and Koenker and Hallock (2001) for the algorithms. Training an
SVM requires the solution to a quadratic programming(QP) optimization problem. But QP problem
presents some inherent limitations which results in computational difficulty especially for the large
data sets. Platt (1998), Flake and Lawrence (2002) developed the sequential minimal optimization
algorithm which divides the QP problem into a series of small QP problems to avoid such computa-
tional difficulty. Perez-Cruz et al. (2000) proposed IRWLS algorithm for SVM regression(SVR) by
transforming the Lagrangian function into sum of quadratic terms by defining associated weights of
predicted errors. ' '

In this paper we propose an IRWLS procedure to solve the QP problem of SVQR with a weighted
quadratic loss function. The weighted quadratic loss function can provide the differentiability at 0,
which enables to solve QP problem by IRWLS procedure. To select appropriate parameters for the
achievement of high generalization performance, a commonly used method is minimizing the cross
validation(CV) function. But selecting parameters using CV function is computationally formidable.
Yuan (2006) proposed the generalized approximate cross validation(GACV) function for quantile
spline estimation with modified check function. In SVQR using QP, GACV function or the gener-
alized cross validation(GCV) function cannot be obtained by solving QP directly. We consider CV
function which is different from that of Yuan (2006) and propose GCV function for the easy model
selection. _

The rest of this paper is organized as follows. In Section 2 we give a review of Support Vector
Quantile regression(SVQR). In Section 3 we propose an IRWLS procedure for SVQR and present the .
model selection method using GCV function. In Section 4 we perform the numerical studies through
examples. In Section 5 we give the conclusions.

2. Support Vector Quantile Regression

Quantile regression has long been studied in the literature. Most commorily used approach has been
introduced by Koenker and Basset (1978). In this section we review the nonlinear quantile regression
methods by implementing the idea of SVM.

Consider a random sample {x;,y;}] , with input vector x; € R? including a constant 1 and output
variable y; € R. Here the output variable y; is related to the vector x; of covariates. In the nonlinear
quantile regression model the quantile function of the response y; for a given x; is assumed to be
nonlinearly related to the input vector x; € R%. To allow for the nonlinear quantile regression, the
input vectors X; are nonlinearly transformed into a potentially higher dimensional feature space ¥ by
a nonlinear mapping function ¢(-). The quantile function of the response y; for a given x; can be given
as

ge(x;) = Wud(x;), for 6€(0,1), (2.1)
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where wy is the 6 regression quantile. Here, similar to SVM for nonlinear regression, the nonlinear
regression quantile estimator cannot be given in an explicit form since we use the kernel function of
input vectors instead of the dot product of their feature mapping functions except for the identity fea-

ture mapping function such that ¢(x) = x. Its estimator is defined as any solution to the optimization
problem (Koenker and Basset, 1978),

min > po(y; - Wip(x), for 6 € (0,1), 2.2)
i=1

where pg(-) is the check function defined as
pe(r) = 0rl(r 2 0) + (8 - Drl(r < 0).

Since quantile regression is in principle based on absolute deviation loss, to derive quantile regression
using the idea of SVM, the procedures of the case € = 0 in a standard SVM is adopted. Then the
quantile regression problem by the formulation for SVM can be expressed as,

1 n
minimize 7 {Iwoll* + C > polyi — Wi(x), for 6 € (0, 1), 2.3)
i=1

The regularization parameter C > 0 determines the trade off between the flatness of quantile function
estimate and the amount up to which deviations larger than 0 are tolerated.
By introducing slack variables &;, &7, we can rewrite (2.3) by following optimization problem,

1 n
minimize Euw9u2 +CZ(6§,~ +(1-9)&, for 8 €(0,1), 2.4)
i=1

yi — Wyp(x;) < &,
subject to { Wyd(X;) —y; < £,
é:i’ f;k 2 0.

The Lagrange function is constructed as follows:
1 n . n
L= slwll’ +C ) 6+ (1 =08~ ) ol = i + Weh(x)
i=1 i=1
= ) (€ +yi— Wex) — D (i + D). 2.5)
i=1 i=1

Notice that the positivity constraints a;, o, 7;,77; = 0 should be satisfied. After taking partial deriva-
tives of Equation (2.5) with regard to the primal variables (wg, &, ¢7) and plugging them into Equation
(2.5), the optimization problem with kernel function K (-, -) is obtained as below,

n

1 Y . .
max > > (@ — a})(@; ~ a))K(x, x,) + ;(ai —a)yi (2.6)

a’a‘ s
i,j=1

with constraints a; € [0,6C] and a} € [0, (1 - 6)C].
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Solving the above optimization problem with the constraints determines the optimal Lagrange
multipliers, @;, ], the 8" regression quantile estimators and the 6" quantile function predictors of
the input vector X are obtained, respectively as follows:

Wo = ) (@ - a))p(x) and §o(®) = ) (@i - @)K (X; ). @7
i=1

i=1

Here, wg and g¢(x) depend implicitly on 6 through a; and o} depending on 6.

3. SVQR Using IRWLS Procedure

In this section we propose SVQR using IRWLS with weighted quadratic loss function. The check
function py(-) used in SVQR can be seen as the weighted quadratic loss function such as

pe(r) = wi(@)r?, (3.1)

where wt(6) = 6/IrlI(r = 0) + (1 — 8)/|r|I(r < 0) with an indicative function I(-). In IRWLS procedure
with the weight obtained from previous step, we can use a differentiable weighted quadratic loss func-
tion instead of the check function which is not differentiable at 0. The representer theorem (Kimeldorf
and Wahba, 1971) guarantees the minimizer of the optimization problem (2.3) to be g¢(x) = KB for
some vector 8 = @ — a* and C = /2. Now the problem (2.3) becomes obtaining to minimize

L) = SBKB+ LD w0 - KibY, 62)
=1 -

where wi(8) = 8/ly; - KBl I(y; - K| = 0)+ (1 — )/ly; - KBl Iy; - KBl < 0) and K; is the i** row
of K. Taking partial derivatives of (3.2) with regard to'B leads to the optimal value of g to be the
solution to

0 = KB — yKW,y + yKW,KpB. (3.3)

Here Wj is a diagonal matrix with the i diagonal element wi(O). The solution to (3.4) cahnot be
obtained in a single step since Wy contains 8. Thus we need to apply IRWLS procedure which starts
with initialized values of 8 as follows:

(a) Calculate Wy with 8.
(b) Calculate 8 from 8 = (KWyK + K/y )" KWyy.

(c) Iterate steps until convergence, where the proper criterion of convergence is found heuristically
from the given data.

The functional structures of SVQR is characterized by hyperparameters - the regularization param-
eter and the kernel parameters. The cross validation(CV) technique used in SVR with the quadratic
loss function cannot be used in SVQR since the check function used in SVQR is not differentiable as
the quadratic loss function. To select the parameters of SVQR using IRWLS we consider the cross
validation(CV) function as follows:

2

V) = =" wi®) (3 - 35 ) (34
i=1
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instead of the cross validation(CV) function used in SVQR using QP with check function, which is,
CV@) = lipe (i - a5 x), 3.5)
dar=) ?

where A is the set of parameters and qg“’" (x,) is the quantile function estimated without i observation.

Since for each candidates of parameters, qg’i)(x;) fori = 1,...,n, should be evaluated, selecting
parameters using CV function is computationally formidable. By leaving-out-one lemma (Craven
and Wahba, 1979) ,

84,(x;1A i
W) (1, ),

(s = 45D} ~ O — QexilD) = Go(xil) — 45 (x4 ~ s

we have

1 - 8G,(x;|1)/8y;”

Then the ordinary cross validation{OCV) function can be obtained as

I =g V¥ 1y (- fzg(x,-lz))z
OCV(/D = n Z W!(G)(T—_m) = ; ;W,(g) (——‘-1 — }Iii N (36)

i=1

where H = K(KW,K + K/y)"' KW is a hat matrix such that §,(x;|1)) = Hy and h;; is the i diagonal
element of H. Replacing h; by their average tr(H)/n, the generalized cross validation(GCV) function
can be obtained as

(i - &5 i) ~

GOV = s 3 wil®) 0 = i)’ 3.7
i=1

4. Numerical Studies

In this section, we illustrate the performance of the proposed quantile regression estimation using
IRWLS through the simulated data sets and motorcycle data set (Hirdle, 1989). We compare the
performance of the proposed quantile regression estimation(SVQR using IRWLS) with that of Takeuci
et al. (2006) which uses the quadratic programming(SVQR using QP). The numerical studies are
conducted in MATLAB environment.

Example 1. We generate one training data set of size 300 and 100 test data sets of size 300 in a
similar manner to Cawley et al. (2004). The univariate input observations x’s are equally spaced
ranging from O to x, the corresponding responses y’s are drawn from a univariate normal distribution
with mean and variance that vary smoothly with x as follows:

-sin-s—f s'ng + o(x) ith o(x) = 1 +-1— 1—-sin—5—f i e~ N@O,1
y= 5 jsinl > | +oWe,  with o(x) = ot 5 )€ , 1),

The Gaussian kernel function is utilized in this example, which is

. ,
K(x;,Xz) = exp (—c—;llxl - lelz),
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Figure 1: An illustration of the proposed SVQR using IRWLS(Left) and QP(Right) for the training data set
of size 300 of Example 1. True quantile regression functions(solid lines) and the estimated quantile regression
functions(dotted lines) are superimposed on the scatter plot.

where x = (1,x;) for i = 1,2. Figure 1 shows a family of quantile functions estimated by SVQR
using IRWLS and QP for the training data set. The estimated quantile regression functions for 6 =
0.1,0.5,0.9 are superimposed on the scatter plot. In SVQR using IRWLS the values of ¥ and o are
chosen by GCV function (3.7) such as (300, 1.5) for 8 = 0.1, (400, 2) for 8 = 0.5 and (400, 2) for
0 = 0.9. In SVQR using QP the values of and are chosen by CV function (3.5) such as (400, 1.5) for
6 = 0.1, (300, 2) for 6 = 0.5 and (300, 1.5) for 8 = 0.9. As seen from Figure 1, in both procedures
the three estimated quantile regression functions reflect well the heteroscedastic structure of the error
terms. They have their (local) minima and (local)'maxima at different values. For example, the 0.1?,
0.5" and 0.9 quantile regression functions have maxima at x = 0.75, 0.75 and 2.15, respectively,
and minima at 1.75, 7 and «, respectively. To illustrate the prediction performance of SVQR using
IRWLS, we compare it with SVQR using QP via 100 data sets, where the mean squared error(MSE)
is used as the estimation performance measure defined by

1 Y 2
MSE = = Z:‘ (go(x:) — Go(x))? .

The averages of 100 MSEs from SVQR using IRWLS and QP are obtained as 0.0173 and 0.0174 for
6 = 0.1, 0.0082 and 0.0084 for ¢ =0.5, 0.0154 and 0.0160 for 9 =0.9, respectively. We can see that
both procedures have almost same estimation performance for Example 1.

Example 2. We generate one training data set of size 300 and 100 test data sets of size 300 in a
similar manner to Cawley et al. (2004). The univariate input observations x’s are equally spaced
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Figure 2: An illustration of the proposed SVQR using IRWLS(Left) and QP(Right) for the training data set
of size 300 of Example 2. True quantile regression functions(solid lines) and the estimated quantile regression
functions(dotted lines) are superimposed on the scatter plot.

ranging from O to 2, the corresponding responses y’s are drawn from a univariate y? distribution with
mean and variance that vary smoothly with x as follows:

21 —x

y = sin(2nx) + o(x)e, with o(x) = A X&) — 2

Here Xé) is the chi-squared distribution with degree of freedom 2. The Gaussian kernel function is
utilized in this example as in Example 1. Figure 2 shows a family of quantile functions estimated by
SVQR using IRWLS and QP for the training data set. The estimated quantile regression functions
for # = 0.1,0.5,0.9 are superimposed on the scatter plot. In SVQR using IRWLS the values of and
are chosen by GCV function (3.7) such as (100, 0.3) for 8 = 0.1, (400, 0.5) for 8 = 0.5 and (400,
0.5) for 8 = 0.9. In SVQR using QP the values of y and o2 are chosen by CV function (3.5) such
as (100, 0.5) for 4 = 0.1, (200, 1) for 4 =-0.5 and (100, 0.5) for 8 = 0.9. As seen from Figure 2,
in both procedures the three estimated quantile regression functions reflect well the heteroscedastic
and nonnormal structure of the error terms. To illustrate the prediction performance of SVQR using
IRWLS, we compare it with SVQR using QP via 100 data sets, where the mean squared error(MSE)
is used as the estimation performance measure. The averages of 100 MSEs from SVQR using IRWLS
and QP are obtained as 0.0034 and 0.0033 for 6 = 0.1, 0.0303 and 0.0446 for 8 = 0.5, 0.2452

and 0.2162 for 8 = 0.9, respectively. We can see that both procedures have almost same estimation
performance for Example 2.

Egample 3. In this example we consider the motorcycle data, which have been widely used to
demonstrate the performance of nonparametric quantile regression methods. The data were collected
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Figure 3: An illustration of the proposed SVQR using IRWLS(Left) and QP(Right) for the mortorcycle data set
of Example 3. The estimated quantile regression functions are superimposed on the scatter plot.

performing crash tests with dummies sitting on motorcycles. The head acceleration(y) of the dum-
mies (in g) was recorded a certain time (measured in milliseconds(x)) after they had hit a wall. The
estimated quantile regression functions for 8 = 0.25,0.5,0.75 are superimposed on the scatter plot in
Figure 1. In SVQR using IRWLS the values of and are chosen by GCV function (3.7) such as (100,
0.5) for 6 = 0.25, (200, 0.5) for = 0.5 and (200, 0.75) for 8 = 0.75. In SVQR using QP the values
of y and 0 are chosen by CV function (3.5) such as (100, 0.75) for = 0.25, (200, 0.75) for § = 0.5
and (10, 0.5) for 6 = 0.75 As seen from Figure 3, as x increases the variance of y increases when
x <33 and decreases when x > 33. We can see that both procedures-have almost same estimation
performance for the motorcycle data. '

5. Conclusions

In this paper, we dealt with estimating the nonlinear quantile regression function by SVQR using IR-
WLS procedure with a weighted quadratic loss function and obtained GCV function for the proposed
method, which provides faster computation time than SVQR using QP. Through the examples we
showed that the proposed method derives the satisfying solutions. We also found that SVQR using -
IRWLS procedure is much faster than SVQR using QP, which implies that the proposed method is
appropriate for the large training data sets.
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