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Abstract

We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on

moment-matching technique to approximate survival and hazard functions in the context of parametric

survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and

distribution functions of convolutions and finite mixtures of random variables, from which the approximated

survival and hazard functions are obtained. This technique provides very accurate approximation to the

target functions, in addition to their being computationally efficient and easy to implement. In addition, the

generalized gamma-polynomial approximations are very stable in middle range of the target distributions,

whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

Keywords: Hazard function, survival function, generalized gamma-polynomial approximation, moments,

convolutions, mixtures.

1. Introduction

Survival and hazard functions are often of interest among parametric functions for statistical analysis

of survival data. In connection with modeling survival data, distributions such as the exponential,

the gamma, the Weibull and Gompertz distributions are often utilized. The more complicated

situations arise, the more complex modelings such as convolutions or finite mixtures need to be

utilized. Convolutions of exponential distributions are, for instance, often used to model the distri-

butions of waiting times in each of the progressive stages in multi-state models, see Keilson (1978),

and convolution of two Weibull distributions to model progression of cancer, progression of tumor

growth, and failure of organs, see Huzurbazar and Huzurbazar (1999). And mixtures of distribu-

tions have also often been used to investigate the bi-modality or multi-modality of data generated

from nonhomogeneous populations. For instance, Pierce et al. (1979) used mixture model to relate

time-to-death data to toxicant levels and other stresses.

It should be noted that although it is useful to model complex phenomenon via convolutions or

mixtures from other types of distributions such as the gamma or the Weibull distributions, there

are limitations to use such models since the models may not be analytically tractable. It should be
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mentioned that the exact expression for the density or distribution functions of the convolution of

gamma and Weibull distributions are very complicated. In such circumstances, it is desirable to use

approximation techniques to obtain such statistical functions of interests. Saddlepoint methods,

which was introduced by Daniels (1954), have been often used to approximate survival and hazard

functions in the context of parametric survival analysis, see, for instance, Daniels (1982), Butler and

Huzurbazar (1997), Huzurbazar and Huzurbazar (1999), Butler and Huzurbazar (2000) and Butler

(2000). It should be mentioned that saddlepoint approximations for convolution of the Weibull

distributions require to calculate either moment or cumulant generating function, which are not

expressed in closed form. Therefore, the alternative way to utilize saddlepoint methods in such

cases requires evaluation of higher-dimensional integrals.

We introduce generalized gamma-polynomial method to approximate survival and hazard func-

tions. Since the generalized gamma-polynomial approximant basically comprises of a product of

generalized gamma baseline density and a polynomial adjustment, the approximated cumulative

distribution function can be expressed simple. The approximated hazard function can also be eas-

ily determined as the ratio of approximated density function and survival function. An explicit

representation of the resulting approximants of hazard functions can be obtained in terms of in-

complete gamma function. The generalized gamma-polynomial approximations are very stable in

middle range of the target distributions, whereas saddlepoint approximations are often unstable in

a neighborhood of the mean, as noted by Reid (1996).

We are aiming to illustrate that the use of generalized gamma-polynomial approximation has bene-

fits of simplicity and accuracy to approximate the survival and hazard functions in certain probabilis-

tic setting. Section 2 briefly reviews the generalized gamma-polynomial approximations. Section 3

and 4 illustrate the use of generalized gamma-polynomial approximation technique in approximat-

ing survival and hazard functions of convolutions and mixtures of random variables, respectively.

And in both cases, we show numerical examples. Concluding remarks are described in Section 5.

2. Generalized Gamma-Polynomial Approximation

A general semi-parametric approach to density approximation is proposed in Ha and Provost (2007).

In this section, we review the approximation technique on the use of generalized gamma baseline

density function for approximating density and distribution functions, from which the approximated

survival and hazard functions are obtained.

Letting X and E(Xh) be a random variable whose support is the real half line and its raw moments,

denoted by µX(h), h = 0, 1, . . ., respectively, we first are interested in approximating the exact den-

sity and distribution functions of the random variable X, denoted by fX(x) and FX(x), respectively.

A generalized gamma-polynomial density approximant of degree d, denoted by f̂X(x; d), is

f̂X(x; d) = g(x)

d∑
i=0

ξix
i, (2.1)

where

g(w) =
γ

βαγΓ(α)
wαγ−1e

−
(

w
β

)γ

I(0,∞)(w) (2.2)

is the generalized gamma baseline density function with three parameters α > 0, β > 0 and γ > 0

on letting IA(x) denote the indicator function, which is equal to 1 when x ∈ A and 0 otherwise,
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Figure 2.1. Exponential(solid), Gamma(dotted) & Weibull Densities(dashed)

and Γ(x) =
∫∞
0

tx−1e−tdt. The generalized gamma distribution is an extensive family that contains

nearly all of the most commonly used distributions, including the exponential, Weibull, lognormal

and gamma. More importantly, the generalized gamma distribution family includes commonly

used types of hazard function: monotonically increasing and decreasing, as well as bathtub and arc-

shaped hazards. As seen in Figure 2.1, the Weibull distribution is a special case of the generalized

gamma when α = 1, the exponential distribution when α = 1 and γ = 1 and the gamma distribution

when γ = 1. The jth moments of the generalized gamma baseline density function, denoted by

µG(j), can be expressed as;

µG(j) =

∫ ∞

0

xjg(x)dx =
βh Γ[α+ h/γ]

Γ[α]
, j = 0, 1, . . . . (2.3)

Three parameters α, β and γ of the generalized gamma baseline density function are estimated

from the first three moments of the target distribution as follows:

µX(1) =
β Γ[α+ 1/γ]

Γ[α]

µX(2) =
β2 Γ[α+ 2/γ]

Γ[α]

µX(3) =
β3 Γ[α+ 3/γ]

Γ[α]
. (2.4)

From the moment matching technique between the moments of the target distribution and those

of the generalized gamma-polynomial density approximant, we can obtain the coefficients ξi of the

polynomial adjustment. That is, the coefficients ξi satisfy the equality

(ξ0, . . . , ξd)
′ = M−1(µX(0), . . . , µX(d))′ , (2.5)

a prime denoting the transpose of a vector and M being an (d+1)× (d+1) moment matrix whose

(h+ 1)th row is (µG(h), . . . , µG(h+ d))′, h = 0, 1, . . . , d.
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The approximate cumulative distribution function of X, denoted by ĜX(x; d), evaluated at c0 is

then

ĜX(c0; d) =

∫ c0

0

f̂X(x; d)dx

=

d∑
i=0

ξi

∫ c0

0

xig(x)dx

=

d∑
i=0

ξi β
i (Γ(i/γ + α)− Γ(i/γ + α, (c0/β)

γ))

Γ(α)
, c0 > 0, (2.6)

where Γ(a, θ) =
∫∞
θ

ta−1e−tdt denotes the incomplete gamma function.

Once the probability density and cumulative distribution functions of X are approximated, the

approximate survival and hazard functions of X, denoted by ŜX(x; d) and ĤX(x; d), respectively,

evaluated at a positive real value c0 as

ŜX(c0; d) = 1− ĜX(c0; d)

=
1

Γ(α)

[
Γ(α)−

d∑
i=0

{
ξiβ

i

(
Γ

(
i

γ
+ α

)
− Γ

(
i

γ
+ α,

(
c0
β

)γ))}]
(2.7)

and

ĤX(c0; d) =
f̂X(c0; d)

ŜX(c0; d)
=

f̂X(c0; d)

1− ĜX(c0; d)

=

γe
−
(

c0
β

)γ d∑
i=0

ξic
αγ+i−1
0 I(0,∞)(c0)

βαγ

[
Γ(α)−

d∑
i=0

{
ξiβi

(
Γ

(
i

γ
+ α

)
− Γ

(
i

γ
+ α,

(
c0
β

)γ))}] . (2.8)

We now show how the generalized gamma-polynomial approximation technique can be used in the

cases of convolution and mixture of random variables and illustrate their computation and quality.

3. Convolutions

A convolution of two or more independent random variables can be expressed as a sum of those

variables. Convolutions of random variables have been applied to a wide array of scientific fields.

Although it is useful to model waiting times in different states via convolutions from other types

of distributions such as the gamma or the Weibull distributions, there are limitations to use such

models since the models may not be analytically tractable. In this section we briefly outline a

convolution model and provide its moments.

The distribution and hazard functions of a Weibull random variable W with parameters (ω, ν),

denoted by fW (t) and hW (t) respectively, are

fW (t) = νων tν−1exp (−ωνtν) I(0,∞)(t) (3.1)

and

hW (t) = νωνtν−1I(0,∞)(t), (3.2)
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where ν > 0, ω > 0. Since the moment generating function of the Weibull distribution is not

available in closed form, we can not evaluate its moments from their moment generating function.

The jth moments of the Weibull random variable W is denoted by µW (j), that is,∫ ∞

0

xjfW (x)dx ≡ µW (j) . (3.3)

Fortunately, the moments of the Weibull distribution is simply expressed, that is, the hth moment

of the Weibull distribution is

µW (h) = ω−hΓ

(
1 +

h

ν

)
, h = 0, 1, . . . . (3.4)

Let C be a random variable of a convolution of ℓ number of the independent Weibull random

variables denoted by Wi, that is C = W1 + W2 + · · · + Wℓ =
∑ℓ

j=1 Wi. It should be noted that

although the exact distribution functions for convolutions of Weibull distributions are analytically

intractable, their exact moments can be easily determined. The hth moment of the convolution

denoted by µC(h) can be obtained as follows;

µC(h) = E

( ℓ∑
i=1

Wi

)h


=
∑

(
∑ℓ

i=1 ji=h)

(
h

j1, . . . , jℓ

)
ℓ∏

i=1

µWi(ji)

=
∑

(
∑ℓ

i=1 ji=h)

(
h

j1, . . . , jℓ

)
ℓ∏

i=1

ω−ji
i Γ

(
1 +

ji
νi

)
, (3.5)

where ωi and νi are the parameters of Wi, µWi(k) is the kth exact moment of Wi and
∑ℓ

i=1 ji = h.

However, in fact that density approximations via generalized gamma-polynomial approximation

technique require the moments of random quantity of interest, generalized gamma-polynomial ap-

proximation might be more suitable than saddlepoint methods for approximating the distribution

of convolution of the Weibull random variables. It is because once the moments of the convolution

could be calculated, generalized gamma-polynomial approximation would be utilized to provide ap-

proximation for its distribution function without requiring the complex integration. We now show

that the generalized gamma-polynomial approximation technique is an alternative to the saddle-

point method in the case of convolution of two Weibull distributions.

Numerical Example 1

We consider an example of the convolution of two Weibull random variables where the parameters of

the Weibull random variables have values ω1 = 2, ω2 = 3 and ν1 = 5, ν2 = 7. The parameters of

the generalized gamma baseline density function are obtained by matching the first three moments

of the convolution of two Weibull random variables to the first three moments of the generalized

gamma baseline density with the parameters as shown in Equation (2.3). The estimated parameters

are α = 2.42251, β = 7.48116 and γ = 2.17197, that is, the baseline density function is

g(w) = 0.0000434258w4.26161 e−0.0126405×w2.17197

I(0,∞)(w) . (3.6)
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Figure 3.1. Two Weibull(solid and dashed) & Generalized Gamma(dotted) PDFs(left panel); Simulated(dotted) & 4th

degree Generalized Gamma-polynomial Distribution Approximant(solid)(right panel)
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Figure 3.2. Approximated Hazard Function via 4th degree Generalized Gamma-Polynomial Approximation

The exact density for two Weibull density functions and the estimated generalized gamma baseline

density are shown in left panel of Figure 3.1. As determined from Equation (2.1), we could obtain

the fourth-degree generalized gamma-polynomial density approximant to the density function of

the convolution, which is

f̂X(w; 4) = 0.0000434258w4.26161 e−0.0126405w2.17197(
1.17392− 0.0745696w

+ 0.0108415w2 − 0.000643926w3 + 0.0000133412w4) . (3.7)

The corresponding distribution approximant, as can be seen in the right panel of Figure 3.1, is in

excellent agreement with the simulated distribution obtained from 3,000 replications. As can be

seen in Figure 3.2, the approximated hazard function can also be easily obtained from both of the

approximants for density and distribution functions of the convolution.

4. Finite Mixtures

Finite mixtures have often been used to model nonhomogeneous population related to survival

analysis, for instances, in discussions of the incidence and curability of cancer, see Farewell (1977)
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and Langlands et al. (1979). In this section we briefly outline a mixed model in terms of their

distributions and moments. A numerical example of approximating hazard function for a mixture

of two gamma distributions will be examined by making use of the generalized gamma-polynomial

approximation.

Let M be a finite mixture of ℓ number of the distributions of random variables of Mi, i = 1, 2, . . . , ℓ.

Then M can be expressed as M =
∑ℓ

i=1 IEiMi, where IEi denotes the indicator function, which

is equal to 1 when an event Ei occurs and 0 otherwise. The probability density function of M ,

denoted by fM (t), can be expressed as follows;

fM (t) = Pr(M = t)

=
ℓ∑

i=1

Pr(M = t|Ei)Pr(Ei)

=

ℓ∑
i=1

ϕifMi(t), (4.1)

where fMi(t) is the probability density function of Mi and ϕi is the probability that Ei occurs,

that is, ϕi = Pr(Ei). ϕi can also be considered as the weight for the random variable of Mi, which

satisfy 0 ≤ ϕi ≤ 1 and
∑ℓ

i=1 ϕi = 1. In the case that Mi are gamma variates with parameters

(αi, βi), the density function of M is expressed as

fM (t) =

ℓ∑
i=1

ϕi

Γ(αi)β
αi
i

tαi−1e
− t

βi I(0,∞)(t). (4.2)

And the jth integer raw moment of M , denoted by µM (j), can be obtained as

µM (j) =

∫ ∞

0

xjfM (x)dx

=

∫ ∞

0

xj
ℓ∑

i=1

ϕi

Γ(αi)β
αi
i

xαi−1e
− x

βi dx

=
ℓ∑

i=1

ϕi

(∫ ∞

0

xj 1

Γ(αi) β
αi
i

xαi−1e
− x

βi dx

)

=

ℓ∑
i=1

ϕiβ
j
i

j∏
k=1

(αi + j − k) . (4.3)

We now show that the generalized gamma-polynomial approximation technique can be applied to

approximate the hazard function of a mixture of two gamma distributions.

Numerical Example 2

We consider an example where a mixture of two gamma random variables with parameters (5, 8)

and (2, 3), and weights ϕ1 = 4/5 and ϕ2 = 1/5. From matching the first three moments of the

mixture of two gamma distributions to the first three moments of the generalized gamma baseline

density with the parameters α, β and γ as shown in Equation (2.3), we obtain the parameters of

the generalized gamma baseline density function, that is, α = 1.09856, β = 33.4493 and γ = 1.5,

that is,

g(t) = 0.004847 t0.647837 e−0.00516916×t1.5 I(0,∞)(t) . (4.4)
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Figure 4.1. Exact (solid) & Generalized Gamma(dotted) Density Functions(left panel); Exact Density Function(solid) &

10th degree Generalized Gamma-polynomial Density Approximant(dotted)(right panel)

40 60 80 100

0.05

0.10

0.15

0.20

0.25

0.30

40 60 80 100

0.05

0.10

0.15

0.20

Figure 4.2. Exact(solid) & Generalized Gamma(dotted) Hazard Functions(left panel); Exact Hazard Function(solid) & 10th

degree Generalized Gamma-polynomial Hazard Approximant(dotted)(right panel)

The exact density for the mixture of two gamma distributions and the estimated generalized gamma

baseline density are shown in left panel of Figure 4.1. As determined from Equation (2.1), we

could obtain the tenth-degree generalized gamma-polynomial density approximant to the density

function of two gamma mixture, which, as can be seen in the right panel of Figure 4.1, is in excellent

agreement with the exact target functions.

The left panel of Figure 4.2 shows the approximated hazard function on the basis of the generalized

gamma baseline density(dotted) with the exact hazard function(solid). The approximated hazard

function, which was obtained from Equation (2.8) by making use of 10 moments of the target

distribution, is also shown in Figure 4.2. As can be seen in both Figures, the approximations so

obtained for density and hazard functions of the mixture of two gamma distributions are in excellent

agreement with the target functions.

5. Concluding Remarks

Generalized gamma-polynomial approximation provides approximation accuracy in the entire range

of the target survival and hazard functions of convolutions as well as their density and distribution

functions. It should also be noted that the generalized gamma-polynomial approximation can also

provide the explicit representation for the approximated density and hazard functions. The higher

degree of the polynomial adjustment is recommended in order to obtain a suitable approximation in

the cases that the exact density function to be approximated is more irregular or more precision is
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required. The symbolic computational package Mathematica was utilized for obtaining the survival

and hazard function approximants for the numerical examples.
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