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Abstract

We derive approximate maximum likelihood estimators of two parameters in a
weighted exponential distribution, and derive the density function for the ratio Y/(X+
Y ) of two independent weighted exponential random variables X and Y , and then
observe the skewness of the ratio density.
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1. Introduction

Gupta and Kundu (2009) introduced a new class of the weighted exponential distribution.
And they studied different properties of the weighed exponential distribution, and they stud-
ied inferential procedures for the weighted exponential distribution. The proposed weighted
exponential distribution has several interesting properties and it can be used quite effec-
tively to analyze the skewed data in Gupta and Kundu (2009). In many situations, it may
perform better than the well known gamma, log-normal, Weibull, or generalized exponential
distributions in Gupta and Kundu (2009).

An example of some beginning importance is the use of some distributions with parameters
to apply life times of lights and machines. For two random variables X and Y , and a
real number c, the probability P (Y < cX) is a distribution of the ratio Y/(X + Y ) when
c = t/(1− t) for 0 < t < 1.

For given random variables X and Y , the distribution of the ratio Y/(X + Y ) is of the
interest in biological and physical sciences, econometrics, engineering and selection. For
example, ratios of normal variables appears as sampling distributions in a single equation
model or in simultaneous equations models. Other areas of the application include the mass
to energy ratios in nuclear physics.
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The problem for estimating the probability that a random variable Y is less than another
a random variable X arises in many practical situations, like the biometry and the reliability
study. The problem has been studied by many authors for different distributions of X and
Y , see, for example Pal et al. (2005), Ali et al. (2009) and Raqab et al. (2007).

Balakrishnan and Cohen (1991) proposed a method of finding an approximate MLE (max-
imum likelihood estimator) of parameters in several distributions. Son and Woo (2009)
studied an approximate MLE in a skewed double Weibull distribution.

Ali et al. (2005) studied the ratio X/(X + Y ) for the power function distribution. Woo
(2008) considered estimations for the reliability and the distribution of the ratio in two
independent different variates. Moon et al. (2009) considered the reliability and the ratio in
two exponentiated complementary power function distributions. Lee and Lee (2010) studied
the ratio in a right truncated Rayleigh distribution.

In this paper, we derive approximate MLEs of two parameters in a weighted exponential
distribution, and derive the density of the ratio R = Y/(X+Y ) of two independent weighted
exponential random variables X and Y , and then observe the skewness of the ratio density.

2. Approximate MLE

A random variable X is said to have a weighted exponential (WE) distribution with the
shape and the scale parameters as α > 0 and β > 0 respectively, if it has the following the
probability density function (pdf) as

f(x;α, β) = α+
1

α
βe−βx(1− e−αβx), x > 0, (2.1)

where α and β are the shape and scale parameters respectively.
Especially if α goes to∞, then the weighted exponential distribution follows an exponential

distribution with the mean 1/β.
From formula 3.381(4) in Gradshteyn and Ryzhik (1965), we get a well-known k-th moment

of the weighted exponential random variable X in Gupta and Kundu (2009) as :

E(Xk) =
(α+ 1)Γ(k + 1)

αβk
(1− (1 + α)−k−1), k = 1, 2, 3, · · · . (2.2)

And then from (2.2), mean and variance of X are given by :

E(X) = (1 + (1 + α)−1)/β

and

V ar(X) = (1 + (1 + α)−3)/β2. (2.3)

Assume X1, X2, · · · , Xn are a random sample from the weighted exponential distribu-
tion with the density (2.1). From the expectation and the variance of X in (2.3), moment

estimates α̃ and β̃ of α and β respectively are given by :

α̃ =
− 2n2S2 + (

∑n
i=1Xi)

2 −
√(

n2S2 − (
∑n
i=1Xi)

2
)2

+ n4S4

n2S2 − (
∑n
i=1Xi)

2
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and

β̃ = n(1 + (1 + α̃)−1)/

n∑
i=1

Xi, (2.4)

where S2 =
∑n
i=1

(
Xi − X̄

)2
/n.

Example 2.1 (Martz and Waller, 1982) The following life times of a system (in months)
are assumed to have come from the density (2.1) :

2.8276, 3.916, 6.2711, 7.2119, 16.8334, 8.1865, 12.2037, 13.0889, 16.1446, 4.4162,

where units are 1,000 hours. Since

10∑
i=1

xi = 91.0983 and

10∑
i=1

x2i = 1065.44,

α̃ = 0.47199 and β̃ = 0.18434.

Now, we consider the likelihood function to derive MLEs of the shape parameter α and the
scale parameter β in the density (2.1). Assume X1, X2, ..., Xn are a random sample from the
weighted exponential distribution with the density (2.1). Then the log-likelihood function
l(α, β) of the shape parameter α and the scale parameter β in the density (2.1) is given by :

l(α, β) = n ln(1 + α)− n lnα+ n lnβ − β
n∑
i=1

xi +

n∑
i=1

ln
(
1− e−αβxi

)
.

As partial differentiating l(α, β) with respect to α and β to derive MLEs α̂ and β̂ of the
shape parameter α and the scale parameter β respectively :

0 =
∂l

∂α
=

n

α+ 1
−
n

α
+

n∑
i=1

βxi
e−αβxi

1− eαβxi
≡ p(α, β)

and

0 =
∂l

∂β
=
n

β
−

n∑
i=1

xi +

n∑
i=1

αxie
−αβxi

1− eαβxi
≡ q(α, β). (2.5)

An approximate MLE usually performs better than moment estimator in the sense of
the mean square error in Balakrishnan and Cohen (1991) and Son and Woo (2009) and an
approximate MLE could be useful in a parametric estimation only when the MLE can’t be
represented by closed form.

From equations (2.5), since MLEs α̂ and β̂ can’t explicitly be represented by closed form,

we consider approximate MLEs α̂ and β̂ of the shape parameter α and the scale parameter
β respectively.

Based on the method of finding approximate MLEs of parameters in the distribution in
Balakrishnan and Cohen (1991), approximate MLEs α̂ and β̂ of α and β are obtained by
the followings :
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Define p0 ≡ p(α̃, β̃) and q0 ≡ q(α̃, β̃). And pα ≡ pα(α̃, β̃) pβ ≡ pβ(α̃, β̃) are partial

derivatives of p(α, β) with respect to α and β respectively and qα ≡ qα(α̃, β̃) and qβ ≡
qβ(α̃, β̃) are partial derivatives of q(α, β) with respect to α and β respectively.

Then from equations (2.5), as taking first two terms of Taylor’s series for p(α, β) and

q(α, β) about (α̃, β̃), we obtain the following asymptotic equations :

0 ≈ p0 + pα · (α− α̃) + pβ · (β − β̃), (2.6)

0 ≈ q0 + qα · (α− α̃) + qβ · (β − β̃),

where pα =
∑n
i=1

 1

α̃2
−

1

(1 + α̃)2
−

β̃2x2i e
−α̃β̃xi(

1− e−α̃β̃xi

)2
 , qβ = −

∑n
i=1

 1

β̃2
+

α̃2x2i e
−α̃β̃xi(

1− e−α̃β̃xi

)2


and

pβ = qα =

n∑
i=1

(
1− α̃β̃xi − e−α̃β̃xi

)
xe−α̃β̃xi(

1− e−α̃β̃xi

)2 . (2.7)

From asymptotic linear equations in (2.6), approximate MLEs α̂ and β̂ of the shape
parameter α and the scale parameter β are obtained as follows :

Proposition 2.1 Assume X1, X2, · · · , Xn are a random sample from the weighted expo-
nential distribution with the density (2.1). Then approximate MLEs α̂ and β̂ of the shape
parameter α and the scale parameter β respectively are given by :

α̂ ≈ α̃+ det(D1)/ det(D),

β̂ ≈ β̃ + det(D2)/ det(D),

where D =

(
pα pβ
qα qβ

)
, D1 =

(
(−p0) pβ
(−q0) qβ

)
, D2 =

(
pα (−p0)
qα (−q0)

)
.

Example 2.2 In Example 2.1, moment estimates α̃ and β̃ of the shape parameter α and
the scale parameter β are given by :

α̃ = 0.47199 and β̃ = 0.18434.

From (2.5), we obtain

p0 = −0.21282 and q0 = −0.54240

and from (2.7), we obtain

pα = −1.80746, pβ = qα = −30.81873 and qβ = −2186.03.

And from Proposition 2.1, we obtain the following determinants :

det(D) = 3001.3699,det(D1) = −448.5213 and det(D2) = 5.5786

and then approximate MLE α̂ and β̂ of the shape parameter α and the scale parameter β
respectively are

α̂ ≈ 0.32252 and β̂ ≈ 0.18624.
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3. Distribution of the ratio Y/(X + Y )

Assume X and Y are two independent weighted exponential random variables each having
parameters (α1, β1) and (α2, β2) respectively. Then from formula 3.381(4) in Gradshteyn and
Ryzhik (1965) and the quotient density in Rohatgi (1976), we obtain the following quotient
density of W = X/Y :

fW (w) =
(α1 + 1)(α2 + 1)

α1α2
β1β2[(β1w + β2)−2 − ((1 + α1)β1w + β2)−2 (3.1)

−(β1w + (1 + α2)β2)−2 + ((1 + α1)β1w + (1 + α2)β2)−2], w > 0.

Let R = Y/(X + Y ) be the ratio of X and Y . Then from the density (3.1), we obtain
density of the ratio R as follow :

fR(r) =
(α1 + 1)(α2 + 1)

α1α2
β1β2[(β1(1− r) + β2r)

−2 − ((1 + α1)β1(1− r) + β2r)
−2

−(β1(1− r) + (1 + α2)β2r)
−2 + ((1 + α1)β1(1− r) + (1 + α2)β2r)

−2], 0 < r < 1.

From formula 3.259(3) in Gradshteyn and Ryzhik (1965) and the quotient density (3.1),
we obtain the following Lemma to derive k-th moment of the ratio R :

Lemma 3.1 For k =1,2,· · · ,∫∞
0

(1 + w)−k(aw + b)−2dw =
1

(k + 1)b2
·2 F1(2, 1; k + 2; 1− a/b),

where 2F1(a, b; c;x) is the generalized hypergeometric function.

From Lemma 3.1 and the ratio R = Y/(X +Y ) = 1/(1 +W ), we obtain the k-th moment
of the ratio R.

Proposition 3.1 Assume X and Y are two independent weighted exponential random
variables each having parameters (α1, β1) and (α2, β2) respectively.

Then the k-th moment of the ratio R = Y/(X + Y ) is :

E(Rk) =
(α1 + 1)(α2 + 1)β1

α1α2(k + 1)β2
[2F1(2, 1; k + 2; 1− β1/β2)

−2 F1(2, 1; k + 2; 1− (1 + α1)β1/β2)

− (1 + α2)−22 F1(2, 1; k + 2; 1− β1/((1 + α2)β2))

− (1 + α2)−22 F1(2, 1; k + 2; 1− (1 + α1)β1/((1 + α2)β2))].

From Proposition 3.1 and recursion formulas 15.2.20, 15.1.3 and 15.1.8 in Abramowitz
and Stegun (1970), Table 3.1 provides approximate means, variances and coefficients of the
skewness of the ratio R = Y/(X + Y ).

From Table 3.1, we observe the following trends for the density of the ratioR = Y/(X+Y ) :

Fact 3.1 Assume X and Y are two independent weighted exponential random variables
each having parameters (α1, β1) and (α2, β2) respectively.
(a) The density fR(r) of the ratio R = Y/(X + Y ) is a symmetric about r = 0.5 when
(α1, β1) = (α2, β2),
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(b) It’s the skewed to left when (α2, β2) = (2, 2) for each α1 and β1 and it’s the skewed to
right when (α2, β2) = (0.5, 0.5) for each α1 and β1.

Remark 3.1 If X and Y are independent and identically distributed weighted exponential
random variables, then it’s no wonder that the density fR(r) of the ratio R is symmetric
about r = 0.5.

Table 3.1 Approximate means, variances and coefficients of the skewness of the ratio.

(α1, β1) =(0.5, 0.5) (α1, β1) =(1, 1)
(α2, β2) mean variance skew mean variance skew
(0.5, 0.5) 0.50000 0.05077 0.00000 0.65617 0.04445 -0.62792
(0.5, 1) 0.36496 0.04556 0.53667 0.52335 0.05133 -0.08893
(0.5, 2) 0.24666 0.03313 1.12405 0.38751 0.04781 0.44185
(1, 0.5) 0.47665 0.05133 0.08893 0.63412 0.04692 -0.53170
(1, 1) 0.34383 0.04445 0.62792 0.50000 0.05219 0.0000
(1, 2) 0.22983 0.03131 1.22603 0.36588 0.04692 0.53170

(2, 0.5) 0.44873 0.05222 0.19375 0.60643 0.05032 -0.41754
(2, 1) 0.31953 0.04339 0.73474 0.47188 0.05347 0.10504
(2, 2) 0.21115 0.02949 1.34481 0.34084 0.04609 0.63729

(α1, β1) =(0.5, 1) (α1, β1) =(0.5, 2)
(α2, β2) mean variance skew mean variance skew
(0.5, 0.5) 0.75334 0.03313 -1.12405 0.55127 0.05222 -0.19375
(0.5, 1) 0.63504 0.04556 -0.53677 0.41536 0.05093 0.32938
(0.5, 2) 0.50000 0.05077 0.0000 0.29054 0.04029 0.88215
(1, 0.5) 0.73427 0.03608 -1.01363 0.52812 0.05347 -0.10504
(1, 1) 0.61249 0.04781 -0.44185 0.39357 0.05032 0.41754
(1, 2) 0.47665 0.05133 0.08893 0.27204 0.03854 0.97774

(2, 0.5) 0.70946 0.04029 -0.88215 0.50000 0.05521 0.00000
(2, 1) 0.58437 0.05093 -0.32938 0.36781 0.04981 0.52158
(2, 2) 0.44873 0.05222 0.19375 0.25121 0.03676 1.09010

(α1, β1) =(2, 2)
(α2, β2) mean variance skew
(0.5, 0.5) 0.78885 0.02942 -1.34481
(0.5, 1) 0.68047 0.04339 -0.73474
(0.5, 2) 0.55127 0.05222 -0.19375
(1, 0.5) 0.77157 0.03249 -1.22855
(1, 1) 0.65916 0.04609 -0.63729
(1, 2) 0.52812 0.05348 -0.10504

(2, 0.5) 0.74879 0.03676 -1.09010
(2, 1) 0.63219 0.04981 -0.52158
(2, 2) 0.50000 0.05521 0.00000
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