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Abstract

Support vector quantile regression (SVQR) is capable of providing more complete
description of the linear and nonlinear relationships among response and input vari-
ables. In this paper we propose a weighted SVQR for the longitudinal data. Further-
more, we introduce the generalized approximate cross validation function to select the
hyperparameters which affect the performance of SVQR. Experimental results are then
presented, which illustrate the performance of the proposed SVQR.

Keywords: Generalized approximate cross validation function, kernel function, longi-
tudinal data, support vector quantile regression.

1. Introduction

Quantile regression introduced by Koenker and Bassett (1978) is gradually involving into
an ensemble of practical statistical methods for estimating and conducting inference about
models for conditional quantile functions. Quantile regression is an increasingly popular
method for estimating the quantiles of a distribution conditional on the values of covariates.
Regression quantiles are robust against the influence of outliers and, taken several at a time,
they give a more complete picture of the conditional distribution than a single estimate of
the center.

Just as classical linear regression methods based on minimizing the sum of squared residu-
als enable one to estimate a wide variety of models for conditional mean functions, quantile
regression methods offer a mechanism for estimating models for the conditional median
function, and the full range of other conditional quantile functions. By supplementing the
estimation of conditional mean functions with techniques for estimating an entire family of
conditional quantile functions, quantile regression is capable of providing a more complete
statistical analysis of the stochastic relationships among random variables. The introduc-
tions and current research areas of the quantile regression can be found in Koenker and
Hallock (2001), Yu et al. (2003).
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The minimization problem associated with linear quantile regression is in essence the linear
programming (LP) optimization problem, which is based on simplex algorithm or interior
point algorithm. The current state of algorithms for nonlinear quantile regression is far
less satisfactory. The widely used algorithm is interior point algorithm. Nonlinear quantile
regression poses new algorithmic challenge. Refer to Koenker and Park (1996) and Koenker
and Hallock (2001) for the algorithms.

For data that are clustered and/or longitudinal, mixed-effect regression models are be-
coming increasingly popular (Hedeker and Gibbons, 2006; Wu and Zhang, 2006; Hwang,
2008; Shim and Seok, 2008; Shim et al., 2009). Mixed-effect models constitute both fixed
and random effects. In clustered data, subjects are clustered within an organization such
as a hospital, school, clinic or firm. In longitudinal data where individuals are repeatedly
assessed, measurements are clustered within individuals. For clustered data the random
effects represent cluster effects, while for longitudinal data the random effects represent
subject effects. For longitudinal data, Koenker (2004) proposed a nonlinear quantile func-
tion including subject-specific bias. Geraci and Bottai (2007) proposed a nonlinear quantile
function based on the asymmetric Laplace distribution.

In this paper we propose a weighted SVQR for longitudinal data. To select appropri-
ate parameters for the achievement of high generalization performance, a commonly used
method is minimizing the cross validation (CV) function. But selecting parameters using CV
function is computationally formidable. Yuan (2006) proposed the generalized approximate
cross validation (GACV) function for quantile spline estimation with a differentiable modi-
fied check function. Li et al. (2007) obtained the trace of hat matrix of estimated quantile,
which leads to obtain GACV function of SVQR with a check function. See Hwang (2007),
Hwang (2008), Shim and Seok (2008) and Shim et al. (2009) for GACV of some other kernel
machines

The rest of this paper is organized as follows. In Section 2 we give a review of SVQR. In
Section 3 we propose SVQR for longitudinal data and present the model selection method
using GACV function. In Section 4 we perform the numerical studies through examples. In
Section 5 we give the conclusions.

2. Support vector quantile regression

Let the training data set D be denoted by (xi, yi)
n
i=1, with each input xi ∈ Rd including

a constant 1 and the response yi ∈ R, where the response variable yi is related to the input
vector xi. Here the feature mapping function φ(·) : Rd → Rdf maps the input space to
the higher dimensional feature space where the dimension df is defined in an implicit way.
An inner product in feature space has an equivalent kernel in input space, φ(xi)

′φ(xj) =
K(xi,xj) (Mercer, 1909). Several choices of the kernel K(·, ·) are possible. We consider
the nonlinear regression case, in which the quantile regression function q(x) of the response
given x can be regarded as a nonlinear function of input vector x. ig With a check function
ρθ(·), the estimator of the θ-th quantile regression function can be defined as any solution
to the optimization problem,

min
1

2
w′w + C

n∑
i=1

ρθ(yi − q(xi)) (2.1)
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where ρθ(r) = θrI(r≥0)+(1−θ)rI(r<0). We can express the regression problem by formulation
for SVQR as follows:

min
1

2
w′w + C

n∑
i=1

(θξi + (1− θ)ξ∗i ) (2.2)

subject to

yi −w′φ(xi)− b ≤ ξi,
w′φ(xi) + b− yi ≤ ξ∗i ,
ξi, ξ

∗
i ≥ 0,

where C is a regularization parameter penalizing the training errors. We construct a La-
grange function as follows:

L =
1

2
w′w + C

n∑
i=1

(θξi + (1− θ)ξ∗i )−
n∑
i=1

αi(ξi − yi +w′φ(xi) + b) (2.3)

−
n∑
i=1

α∗i (ξ
∗
i + yi −w′φ(xi)− b)−

n∑
i=1

(ηiξi + η∗i ξ
∗
i ).

We notice that the positivity constraints αi, α
∗
i , ηi, η

∗
i ≥ 0 should be satisfied. After tak-

ing partial derivatives of equation (2.3) with regard to the primal variables (w, ξi, ξ
∗
i ) and

plugging them into equation (2.3), we have the optimization problem below.

max−
1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi,xj) +

n∑
i=1

(αi − α∗i )yi (2.4)

with constraints
n∑
i=1

(αi − α∗i ) = 0, αi ∈ [0, θC], α∗i ∈ [0, (1− θ)C].

Solving the above equation with the constraints, the optimal Lagrange multipliers, αi and
α∗i are determined. And then the estimator of the θ-th quantile regression function given
the input vector x is obtained as follows,

q̂θ(x) =

n∑
i=1

K(xi,x)(αi − α∗i ) + b. (2.5)

The optimal value of b is obtained by employing Karush-Kuhn-Tucker conditions (Kuhn
and Tucker, 1951) as follows,

b =
1

ns

∑
i∈Is

(yi −K(xi,x)(α−α∗))

where Is = {i = 1, 2, · · · , n : (θ − 1)C < αi − α∗i < θC} , ns is the size of Is.
In the nonlinear case, w is no longer explicitly given. However, it is uniquely defined in

the weak sense by the dot products. Here the linear regression model can be regarded as a
special case of the nonlinear regression model by using identity feature mapping function,
that is, φ(x) = x which implies the linear kernel such that K(x1,x2) = x′1x2 .
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3. Weighted SVQR

In this section we propose a weighted SVQR for longitudinal data by incorporating the
weights obtained from median regression into SVQR represented in Section 2.

Karlsson (2008) used the weighted objective function to take correlation of ei =
(ei1, · · · , eini)

′ into the estimation of quantiles,

min

N∑
i=1

ni∑
j=1

ωijρθ(yij − f(xij ,β)),

where ωij is the weight on the j th observation of the i th subject and f(xij ,β) is a known
nonlinear parametric function.

For the longitudinal data, we define the estimator of the θ-th quantile regression function
as any solution to the optimization problem,

min
1

2
w′w + C

N∑
i=1

ni∑
j=1

ωijρθ(yij − q(xij)) (3.1)

Given ωij for i = 1, · · · , N, j = 1, · · · , ni, we have the optimization problem below.

max−
1

2

N∑
i,k=1

ni∑
j=1

nk∑
l=1

(αij − α∗ij)(αkl − α∗kl)Kij,kl +

N∑
i=1

ni∑
j=1

(αij − α∗ij)yij (3.2)

with constraints

,

N∑
i=1

ni∑
j=1

(αij − α∗ij) = 0, αij ∈ [0, ωijθC], α∗ij ∈ [0, ωij(1− θ)C],

where K is the Nn × Nn kernel matrix , Nn =
∑N
i=1 ni and Kij,kl is an element of K

corresponding to xij and xkl . Here we use two types of weights proposed by Karlsson
(2008),

eij = yij − q̂0.5(xij), ui =
1

ni

ni∑
j=1

|eij − ēi.|, ui =

√√√√ 1

ni

ni∑
j=1

(eij − ēi.)2, ωij =
1

ui
(3.3)

where q̂0.5(xk) is obtained from (3.1) with ωij = 1.
The estimator of the θ -th quantile regression function given the input vector xij is ob-

tained as follows.

q̂θ(xij) =

N∑
k=1

nk∑
l=1

Kij,kl(αkl − α∗kl) + b,

where Kij,kl is the element of K corresponding to xij and xkl.
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The functional structures of SVQR is characterized by hyperparameters - the regulariza-
tion parameter C and the kernel parameters. We define the cross validation (CV) function
used in SVQR for longitudinal data as,

CV (λ) =
1

Nn

N∑
i=1

ni∑
j=1

ωijρθ(yij − q̂θ(−ij)(xij |λ)), (3.4)

where λ is a set of hyperparameters and q̂θ
(−ij)(xij |λ) is the θ -th quantile regres-

sion function estimated without (xij , yij). Since for each candidates of hyperparameters,

q̂θ
(−ij)(xij |λ) for i = 1, · · · , N, j = 1, · · · , ni, should be evaluated, selecting parameters

using CV function is computationally formidable.
For convenience, we now rearrange yij ’s using single index and then denote each response

by yk, k = 1, · · · , Nn That is, yij ’s are denoted as follows:

y1 = y11, · · · , yn1
= y1,n1

, yn+1 = y21, · · · , y2n2
= y2,n2

, · · · , yNn
= yN,nN

.

We also rearrange ( ωij , xij )’s and then denote these pairs using single index in accordance
with yij ’s. Then the estimator of the θ -th quantile regression function given the input vector
x is obtained as follows.

q̂θ(x) =

Nn∑
k=1

K(xk,x)(αk − α∗k) + b,

and the CV function (3.4) can be rewritten as

CV (λ) =
1

Nn

Nn∑
k=1

ωkρθ(yk − q̂θ(−k)(xk|λ)). (3.5)

By leaving-out-one lemma (Craven and Wahba, 1979),

(yk − q̂θ(−k)(xk|λ))− (yk − q̂θ (xk|λ)) = q̂θ (xk|λ)− q̂θ(−k)(xk|λ) ≈
∂q̂θ(xk|λ)

∂yk
(yk − q̂θ(−k)(xk|λ))

we have

(yk − q̂(−k)θ (xk|λ)) ≈
yk − q̂θ(xk|λ)

1−
∂q̂θ(xk|λ)

∂yk

.

Then the approximate cross validation (ACV) function can be obtained as

ACV (λ) =
1

Nn

Nn∑
k=1

ωk

 yk − q̂θ(xk|λ)

1−
∂q̂θ(xk|λ)

∂yk

 =
1

Nn

Nn∑
k=1

ωk
ρθ(yk − q̂θ(xk|λ))

1− hkk
,



314 Changha Hwang

where H is the hat matrix such that q̂θ(x|λ) = Hy with the (k, l) thelement hkl =
∂q̂θ(xk)/∂yl. By Li et al.(2007) we have tr(H) = a size of the set E,

E = {k = 1, · · · , Nn|yk − qθ(xk) = 0, 0 <= αk <= ωkθC, 0 <= α∗k <= ωk(1− θ)C}.

Replacing hii by their average tr(H)/n , the generalized approximate cross validation
(GACV) function can be obtained as

GACV (λ) =

∑Nn

k=1 ωkρθ(yk − q̂(xk|λ))

Nn − |E|
, (3.6)

where |E| is a size of the set E.

4. Numerical studies

In this section, we illustrate the performance of the proposed quantile regression estimation
through the simulated example on the nonlinear quantile regression case. We set 2 subjects
and 200 observations in each subject for a data set. We generate 100 data sets for the
numerical studies. The univariate input observations x are equally spaced ranging from 0
to 1, the corresponding responses y are drawn from a univariate normal distribution with
the variance that varies with subject as follows,

yij ∼ N (sin(1.5πxij), 2i+ 1) , i = 1, 2, j = 1, 2, · · · , 200.

The radial basis kernel function is utilized in this example, which is

K(x1, x2) = exp(−
1

σ2
||x1 − x2||2).

We use the weight wij computed from the equation (3.3) with ui =

√
1

ni

∑ni

j=1(eij − ēi.)2.

Figure 4.1 shows a family of quantile functions estimated by the weighted SVQR and un-
weighted SVQR which ignores the subject effects. The estimated quantile regression func-
tions for θ = 0.1, 0.5, 0.9 are superimposed on the scatter plot. To illustrate the estimation
performance of the weighted SVQR, we compare it with SVQR via 100 data sets, where the
mean squared error (MSE) is used as the prediction erformance measure defined by

MSE =
1

100

100∑
l=1

2∑
i=1

200∑
j=1

(q̂
(l)
θ (xij)− q(l)θ (xij))

2forθ = 0.1, 0.5, 0.9.

The averages of 100 MSEs and their standard deviations from the weighted SVQR and the
unweighted SVQR are obtained in Table 4.1. In this example, we can see that the weighted
SVQR provides better estimation performance than SVQR for longitudinal data.
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Figure 4.1 An illustration of the proposed weighted SVQR (Upper) and SVQR (Lower) for one of 100
data sets. True quantile regression function (solid line) and the estimated quantile regression function

(dotted line) for θ = 0.1, 0.5, 0.9 are superimposed on the scatter plot.

Table 4.1 The averages of 100 MSEs and their standard deviations in parenthesis of the proposed
weighted SVQR and the unweighted SVQR for data sets.

θ weighted SVQR unweighted SVQR
0.1 0.2110(0.0750) 0.2118(0.0831)
0.5 0.0549(0.0290) 0.0562(0.0307)
0.9 0.2060(0.0686) 0.2147(0.0775)

5. Conclusions

In this paper, we dealt with estimating the nonlinear quantile regression function by SVQR
for longitudinal data and obtained GACV function for the proposed procedure. Through
the example we showed that the proposed procedure can be useful in analyzing longitudinal
data.
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