• Title/Summary/Keyword: generalized Hyers-Ulam-Rassias stability

Search Result 63, Processing Time 0.025 seconds

A FIXED POINT APPROACH TO THE STABILITY OF QUINTIC MAPPINGS IN QUASI β-NORMED SPACES

  • Koh, Heejeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.757-767
    • /
    • 2013
  • We investigate the general solution of the following functional equation and the generalized Hyers-Ulam-Rassias stability problem in quasi ${\beta}$-normed spaces and then the stability by using alternative fixed point method for the following quintic function $f:X{\rightarrow}Y$ such that f(3x+y)+f(3x-y)+5[f(x+y)+f(x-y)]=4[f(2x+y)+f(2x-y)]+2f(3x)-246f(x), for all $x,y{\in}X$.

Hyers-Ulam Stability of Cubic Mappings in Non-Archimedean Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.315-327
    • /
    • 2010
  • We give a xed point approach to the generalized Hyers-Ulam stability of the cubic equation f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x) in non-Archimedean normed spaces. We will give an example to show that some known results in the stability of cubic functional equations in real normed spaces fail in non-Archimedean normed spaces. Finally, some applications of our results in non-Archimedean normed spaces over p-adic numbers will be exhibited.

ON THE STABILITY OF RADICAL FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES

  • Cho, Yeol Je;Gordji, Madjid Eshaghi;Kim, Seong Sik;Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1511-1525
    • /
    • 2014
  • In this paper, we prove the generalized Hyers-Ulam stability results controlled by considering approximately mappings satisfying conditions much weaker than Hyers and Rassias conditions for radical quadratic and radical quartic functional equations in quasi-${\beta}$-normed spaces.

SEVERAL STABILITY PROBLEMS OF A QUADRATIC FUNCTIONAL EQUATION

  • Cho, In-Goo;Koh, Hee-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.99-113
    • /
    • 2011
  • In this paper, we investigate the stability using shadowing property in Abelian metric group and the generalized Hyers-Ulam-Rassias stability in Banach spaces of a quadratic functional equation, $f(x_1+x_2+x_3+x_4)+f(-x_1+x_2-x_3+x_4)+f(-x_1+x_2+x_3)+f(-x_2+x_3+x_4)+f(-x_3+x_4+x_1)+f(-x_4+x_1+x_2)=5{\sum\limits_{i=1}^4}f(x_i)$. Also, we study the stability using the alternative fixed point theory of the functional equation in Banach spaces.

GENERALIZED HYERES{ULAM STABILITY OF A QUADRATIC FUNCTIONAL EQUATION WITH INVOLUTION IN QUASI-${\beta}$-NORMED SPACES

  • Janfada, Mohammad;Sadeghi, Ghadir
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1421-1433
    • /
    • 2011
  • In this paper, using a fixed point approach, the generalized Hyeres-Ulam stability of the following quadratic functional equation $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=3(f(x)+f(y)+f(z))$ will be studied, where f is a function from abelian group G into a quasi-${\beta}$-normed space and ${\sigma}$ is an involution on the group G. Next, we consider its pexiderized equation of the form $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=g(x)+g(y)+g(z)$ and its generalized Hyeres-Ulam stability.

THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES

  • Arunkumar, Mohan;Bodaghi, Abasalt;Rassias, John Michael;Sathya, Elumalai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.287-328
    • /
    • 2016
  • In the current work, we define and find the general solution of the decic functional equation g(x + 5y) - 10g(x + 4y) + 45g(x + 3y) - 120g(x + 2y) + 210g(x + y) - 252g(x) + 210g(x - y) - 120g(x - 2y) + 45g(x - 3y) - 10g(x - 4y) + g(x - 5y) = 10!g(y) where 10! = 3628800. We also investigate and establish the generalized Ulam-Hyers stability of this functional equation in Banach spaces, generalized 2-normed spaces and random normed spaces by using direct and fixed point methods.

GENERALIZED JENSEN'S FUNCTIONAL EQUATIONS AND APPROXIMATE ALGEBRA HOMOMORPHISMS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.401-410
    • /
    • 2002
  • We prove the generalized Hyers-Ulam-Rassias stability of generalized Jensen's functional equations in Banach modules over a unital $C^{*}$-algebra. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with generalized Jensen's functional equations in Banach algebras.