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A NEW GENERALIZED QUARTIC FUNCTIONAL

EQUATION AND ITS STABILITY PROBLEMS

Heejeong Koh*

Abstract. We will introduce a new type of quartic functional
equation and then investigate the stability for a quartic functional
equation in a convex modular space.

1. Introduction

The stability problem for a functional equation was first posed by
Ulam [23] in the context of the stability of group homomorphisms. In
the next year, Hyers [6] gave a partial answer to the question of Ulam.
Subsequently, Hyers’ theorem was generalized in various directions. The
first author who generalized Hyers’ theorem to the case of unbounded
control functions was Aoki [1]. Rassias [20] succeeded in extending the
result of Hyers’ by weakening the condition for the Cauchy difference.
Rassias’ paper [20] has been very influential provided in the develop-
ment of Hyers-Ulam stability or Hyers-Ulam-Rassias stability of func-
tional equations. In 1996, Isac and Rassias [7] were first to provide
applications of new fixed point theorems for the proof of the stability of
functional equations. By using fixed point methods the stability prob-
lems of several functional equations over various normed spaces have
been extensively investigated by a number of authors; see [4], [3], [17]
and [18]. In particular, Rassias [19] introduced the quartic functional
equation

(1.1) f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) + 24f(y) .

It is easy to see that f(x) = x4 is a solution of (1.1) by virtue of the
identity

(1.2) (x+ 2y)4 + (x− 2y)4 + 6x4 = 4(x+ y)4 + 4(x− y)4 + 24y4 .
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For this reason, (1.1) is called a quartic functional equation. Chung
and Sahoo [5] determined the general solution of (1.1) without assuming
any regularity conditions on the unknown function. In fact, they proved
that the function f : R → R is a solution of (1.1) if and only if f(x) =
A(x, x, x, x) , where the function A : R4 → R is symmetric and additive
in each variable. Lee and Chung [9] introduced a quartic functional
equation as follows:

(1.3) f(ax+ y) + f(ax− y)

= a2f(x+ y) + a2f(x− y) + 2a2(a2 − 1)f(x)− 2(a2 − 1)f(y) ,

for fixed integer a with a 6= 0, ±1 .
As we notice there are various definitions for the stability of the quar-

tic functional equations, in this paper, we will introduce a new type of
a generalized quartic functional equation as follows :

(1.4) f(ax− by) + f(bx− ay) +
ab

2
(a− b)2f(x+ y)

=
ab

2
(a+ b)2f(x− y) + (a2 − b2)2[f(x) + f(y)]

where a and b are integers with a 6= b and a, b 6= 0,±1 .

Definition 1.1. Let X be a linear space over a field K (R or C) .
A generalized functional ρ : X → [0, ∞] is called a modular if for any
x , y ∈ X ,

(M1) ρ(x) = 0 if and only if x = 0 .
(M2) ρ(αx) = ρ(x) for all scalar α with |α| = 1 .
(M3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all scalars α , β ≥ 0 with α+ β = 1 .

If (M3) is replaced by
(M4) ρ(αx + βy) ≤ αρ(x) + βρ(y) for all scalars α , β ≥ 0 with

α+ β = 1 , then the functional ρ is said to be a convex modular.

A modular ρ defines the following vector space:

Xρ := {x ∈ X | ρ(λx)→ 0 as λ→ 0}
and we call Xρ a modular space. Let ρ be a convex modular. The norm
on the modular space Xρ is defined by

||x||ρ = inf
{
λ > 0 | ρ

(x
λ

)
≤ 1
}
.

It is called the Luxemburg norm.
A modular ρ is said to satisfy the ∆2-condition if there exists k > 0

such that ρ(2x) ≤ kρ(x) for all x ∈ Xρ . We call the constant k a ∆2-
constant related to ∆2-condition. Now, let {xn} be a sequence in Xρ .
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The sequence {xn} is ρ-convergent to a point x ∈ Xρ if ρ(xn − x) → 0
as n→∞ or limn→∞ xn = x . The sequence {xn} is called ρ-Cauchy if
for any ε > 0 one has ρ(xn − xm) < ε for sufficiently large n, m ∈ N .
Also, Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent
to a point in Xρ . The modular ρ has the Fatou property if and only
if ρ(x) ≤ lim infn→∞ ρ(xn) whenever the sequence {xn} is ρ-convergent
to x . The modular theory on linear spaces and the related modular
theory on linear spaces have been established by Nakano [16]. Kim and
Shin [11] investigated the stability problems of additive and quadratic
functional equations in modular spaces.

In this paper, we will obtain a general solution of the generalized quar-
tic functional equation (1.4) and then investigate the stability problems
by using both the direct method and the fixed point method for the
given generalized quartic functional equation in the modular space.

2. A solution for a generalized quartic functional equation

In this section let X and Y be real vector spaces. We will inves-
tigate the general solution of the functional equation (1.4)concerning
n-additive symmetric mappings. The key concepts are found in [22]
and [24].

Theorem 2.1. A mapping f : X → Y is a solution of the functional
equation (1.4) if and only if f is of the form f(x) = A4(x) for all x ∈ X ,
where A4(x) is the diagonal of a 4-additive symmetric mapping A4 :
X4 → Y .

Proof. Suppose f satisfies the functional equation (1.4) . On letting
x = y = 0 in the equation(1.4),

(2a4 − 2a2b2 + 2b4 − 2)f(0) = 0 .

Hence f(0) = 0 . On putting y = 0 in the equation (1.4), we have

(2.1) f(ax) + f(bx) = a4f(x) + b4f(x)

for all x ∈ X . Also, on letting x = 0 in the equation (1.4) and then
replacing y by −x , we get

f(bx) + f(ax) +
ab

2
(a− b)2f(−x)− ab

2
(a+ b)2f(x)− (a2 − b2)2f(−x) = 0

for all x ∈ X . By using the equation (2.1), we have

(a4 + b4 − 1

2
a3b− a2b2 − 1

2
ab3)(f(−x)− f(x)) = 0 .
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That is, f(x) = f(−x) , for all x ∈ X . By Theorems 3.5 and 3.6 in [24],
f is a generalized polynomial function of degree at most 4, that is, f is
of the form

(2.2) f(x) = A4(x) +A3(x) +A2(x) +A1(x) +A0(x)

for all x ∈ X , where A0(x) = A0 is an arbitrary element of Y and Ai(x)
is the diagonal of an i-additive symmetric mapping Ai : Xi → Y for
i = 1, 2, 3, 4 . By f(0) = 0 and f(−x) = f(x) for all x ∈ X , we get
A0(x) = A0 = 0 and A1(x) = A3(x) = 0 . Hence we have

f(x) = A4(x) +A2(x) ,

for all x ∈ X . The equation (2.1) and An(rx) = rnAn(x) for all x ∈ X
and all r ∈ Q imply that

a4(A4(x)+A2(x))+b4(A4(x)+A2(x)) = (a4 +b4)A4(x)+(a2 +b2)A2(x)

for all x ∈ X . Hence we may conclude that A2(x) = 0 . Thus f(x) =
A4(x) for all x ∈ X , as desired.

Conversely, assume that f(x) = A4(x) for all x ∈ X , where A4(x)
is the diagonal of a 4-additive symmetric mapping A4 : X4 → Y . Note
that

A4(qx+ ry)

= q4A4(x) + 4q3rA3,1(x, y) + 6q2r2A2,2(x, y) + 4qr3A1,3(x, y) + r4A4(y)

csAs,t(x, y) = As,t(cx, y) , ctAs,t(x, y) = As,t(x, cy)

where 1 ≤ s, t ≤ 3 and c ∈ Q . Thus we may conclude that f satisfies
the equation (1.4).

Now, we call the mapping f a generalized quartic mapping if f satisfies
the equation (1.4).

3. The Direct Method Approach

Throughout this section let V be a linear space and Xρ a ρ-complete
convex modular space unless otherwise stated. Now, we will state some
basic properties as a remark to be used in this section.

Remark 3.1. 1. ρ(αx) ≤ αρ(x) for all 0 ≤ α ≤ 1 .
2. ρ(

∑n
j=1 αjxj) ≤

∑n
j=1 αjρ(xj) for all αj ≥ 0 , where

∑n
j=1 αj ≤ 1 .
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Lemma 3.2. Let X be a linear space over a field K (R or C) . Suppose
X satisfies the 42-condition with 42-constant k . Then for each a ∈ K
with |a| > 1 there exists a constant ka such that ρ(ax) ≤ kaρ(x) for all
x ∈ X .

Proof. Since |a| > 1 , then there exists a positive integer n such that
2n−1 < |a| ≤ 2n . Hence we have

ρ(ax) = ρ(
a

|a|
|a|x) = ρ(|a|x) = ρ(

|a|
2n

2nx)

≤ |a|
2n
ρ(2nx) ≤ |a|

2n
knρ(x) = kaρ(x)

where ka = |a|
2nk

n .

Definition 3.3. Let a ≥ 2 be an integer. A modular ρ is said to
satisfy the ∆a-condition if there exists ka > 0 such that ρ(ax) ≤ kaρ(x)
for all x ∈ Xρ . We call the constant ka a ∆a-constant related to the
∆a-condition and a .

Lemma 3.4. Let a ≥ 2 be a fixed integer. Let X be a linear space
over a field K (R or C) . Suppose X satisfies the 4a-condition with 4a-
constant ka . Then the 4a-constant ka is greater than equal to a .

Proof. If ka < a , then ρ(x) ≤ 1
aρ(ax) ≤ ka

a ρ(x) < ρ(x) , for all x ∈ X .
It is a contradiction.

For a given function f : V → Xρ and a fixed integer a ≥ 2 let

Daf(x, y) := f(ax− y) + f(x− ay) +
a

2
(a− 1)2f(x+ y)

−a
2

(a+ 1)2f(x− y)− (a2 − 1)2[f(x) + f(y)]

Theorem 3.5. Let a ≥ 2 be an integer. Suppose Xρ satisfies the 4a-
condition with 4a-constant ka . If there exists a function φ : V → [0, ∞)
for which a mapping f : V → Xρ satisfies

(3.1) ρ(Daf(x, y)) ≤ φ(x, y)

(3.2) lim
n→∞

k4na φ
( x
an
,
y

an

)
= 0 and

∞∑
j=1

(k5a
a

)j
φ
( x
aj
,
y

aj

)
<∞



210 H. Koh

for all x, y ∈ V, then there exists a unique generalized quartic mapping

Q : V → Xρ defined by Q(x) = ρ− limn→∞ a
4nf
(
x
an

)
and

(3.3) ρ
(
f(x)−Q(x)

)
≤ 1

a k3a

∞∑
j=1

(k5a
a

)j
φ
( x
aj
, 0
)

for all x ∈ V.

Proof. On taking x = y = 0 in the inequality (3.1), we have ρ(2a2(1−
a2)f(0)) ≤ φ(0, 0) . The equation (3.2) implies that f(0) = 0 . Now,
replacing x and y by x

a and 0 respectively, we have

(3.4) ρ
(
f(x)− a4f

(x
a

))
≤ φ

(x
a
, 0
)

for all x ∈ V. For any positive integer n , the 4a-condition and the
Remark 3.1 imply that

ρ
(
f(x)− a4nf

( x
an

))
= ρ

( n∑
j=1

1

aj

(
a5j−4f

( x

aj−1

)
− a5jf

( x
aj

)))
≤ 1

k4a

n∑
j=1

(k5a
a

)j
φ
( x
aj
, 0
)

for all x ∈ V. For all positive integers n and m with n ≥ m, we get

ρ
(
a4nf

( x
an

)
− a4mf

( x

am

))
≤ k4ma ρ

(
a4(n−m)f

( x
an

)
− f

( x

am

))
≤ 1

k4a
k4ma

n−m∑
j=1

(k5a
a

)j
φ
( x

am+j
, 0
)

≤ 1

k4a

( a
ka

)m n∑
j=m+1

(k5a
a

)j
φ
( x
aj
, 0
)

for all x ∈ V. The last part of the above inequalities tends to zero as

m → ∞ . Hence the sequence {a4nf
(
x
an

)
} is a ρ-Cauchy sequence in

the ρ-complete convex modular space. This means that the sequence

{a4nf
(
x
an

)
} is ρ-convergent in Xρ . Hence we may define a mapping

Q : V → Xρ by

Q(x) = lim
n→∞

a4nf
( x
an

)
for all x ∈ V. In fact, this means that

(3.5) lim
n→∞

ρ
(
a4nf

( x
an

)
−Q(x)

)
= 0
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for all x ∈ V. By using the 4a-condition with 4a-constant ka, we have

ρ(f(x)−Q(x)) = ρ
(
f(x)− a4nf

( x
an

)
+ a4nf

( x
an

)
−Q(x)

)
≤ ρ

(1

a

(
af(x)− a4n+1f

( x
an

))
+

1

a

(
a4n+1f

( x
an

)
− aQ(x)

))
≤ ka

a
ρ
(
f(x)− a4nf

( x
an

))
+
ka
a
ρ
(
a4nf

( x
an

)
−Q(x)

)
≤ ka

a

1

k4a

n∑
j=1

(k5a
a

)j
φ
( x
aj
, 0
)

+
ka
a
ρ
(
a4nf

( x
an

)
−Q(x)

)
for all x ∈ V. As n→∞ , the last part of the above inequalities implies
that

ρ(f(x)−Q(x)) ≤ 1

a k3a

∞∑
j=1

(k5a
a

)j
φ
( x
aj
, 0
)

for all x ∈ V, that is, the inequality (3.3). Next, we will show the
mapping Q is a generalized quartic mapping, that is, it satisfies the
equality (1.4) when b = 1 . We note that

ρ
(
a4nDaf

( x
an

,
y

an

))
≤ k4na φ

( x
an

,
y

an

)
→ 0

for all x, y ∈ V, as n→∞ .

By an integer number a ≥ 2 and the Remark 3.1, we have

ρ(DaQ(x, y))

= ρ
(
DaQ(x, y)− a4nDaf

( x
an

,
y

an

)
+ a4nDaf

( x
an

,
y

an

))
≤ k3a

a3

[
ρ
(
Q(ax− y)− a4nf

(ax− y
an

))
+ ρ
(
Q(x− ay)− a4nf

(x− ay
an

))
+
ka(ka − 1)2

2
ρ
(
Q(x+ y)− a4nf

(x+ y

an

))
−ka(ka + 1)2

2
ρ
(
Q(x− y)− a4nf

(x− y
an

))
−(k2a − 1)2ρ

(
Q(x)− a4nf

( x
an

))
− (k2a − 1)2ρ

(
Q(y)− a4nf

( y
an

))
+ρ
(
a4nDaf

( x
an

,
y

an

)) ]
for all x, y ∈ V. The note and the equation (3.5) imply that ρ(DaQ(x, y)) =
0 for all x, y ∈ V. Hence the mapping Q is a generalized quartic map-
ping, as desired. Finally, we have to show that the mapping Q is unique.
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To show the uniqueness, we may assume that there is another a gener-

alized quartic mapping Q̃ : V → Xρ satisfies the inequality (3.3). Then

we have Q(x) = a4nQ( x
an ) and Q̃(x) = a4nQ̃( x

an ) for all x ∈ V. Hence
we get

ρ(Q(x)− Q̃(x)) = ρ
(
a4nQ(

x

an
)− a4nQ̃(

x

an
)
)

≤ k4na

[
ρ
(
Q
( x
an

)
− f

( x
an

)
− Q̃

( x
an

)
+ f

( x
an

))]
≤ 2

a k3a

( a
ka

)n ∞∑
j=n+1

(k5a
a

)j
φ
( x
aj
, 0
)

for all x ∈ V. On taking the limit as n→∞ , the uniqueness is proved.

Corollary 3.6. Let a ≥ 2 be an integer number and θ and p >

loga
k5a
a be real numbers. Suppose V is a normed space with norm || · ||

and Xρ satisfies the 4a-condition with 4a-constant ka . If f : V → Xρ

satisfies

(3.6) ρ(Daf(x, y)) ≤ θ(||x||p + ||y||p)

for all x, y ∈ V, then there exists a unique quartic mapping Q : V → Xρ

such that

(3.7) ρ
(
f(x)−Q(x)

)
≤ θ k2a
a (ap+1 − k5a)

||x||p

for all x ∈ V.

Proof. On taking φ(x, y) = θ(||x||p + ||y||p) in the Theorem 3.5, we
know that the inequality (3.6) holds. Also, the inequalities (3.2) are
satisfied. According to Theorem 3.5, the inequality (3.7) holds.

4. The Fixed Point Method Approach

In this section we use some ideas from [10] and [25] and we shall
study the Hyers-Ulam stability for the generalized quartic functional
equation (1.4) in a modular space by using the fixed point method. We
first assume that ρ is a convex modular on Xρ with the Fatou property
satisfying the 4a-condition with 4a-constant 0 < ka < a , where a ≥ 2
is an integer.
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Theorem 4.1. Let φ : V 2 → [0,∞) be a function such that there
exists an 0 < L < 1 with

(4.1) φ(ax, ay) ≤ a4Lφ(x, y)

for all x, y ∈ V. If f : V → Xρ is a mapping satisfying f(0) = 0 and

(4.2) ρ(Daf(x, y)) ≤ φ(x, y)

for all x, y ∈ V, then there exists a unique generalized quartic mapping
Q : V → Xρ defined by Q(x) = limn→∞

1
a4n

f(anx) and

(4.3) ρ
(
f(x)−Q(x)

)
≤ 1

a4(1− L)
φ(x, 0)

for all x ∈ V.

Proof. We define the set S to be

S := {g : V −→ Xρ, g(0) = 0}
and define a mapping ρ̃ on S by

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ c φ(x, 0)}
for all x ∈ V . By Lemma 3.3 of [25], we have the set S is a linear space,
ρ̃ is a convex modular on S and hence the corresponding modular space
Sρ̃ is the whole space S and is ρ̃-complete. Moreover, ρ̃ satisfies the
4a-condition with 0 < ka < a .

Now, we consider a function T : Sρ̃ → Sρ̃ defined by

(4.4) Tg(x) :=
1

a4
g(ax)

for all g ∈ Sρ̃ and x ∈ V . Let g, h ∈ Sρ̃ be given mappings and c ∈ [0, ∞]
be an arbitrary constant such that ρ̃(g − h) ≤ c . The definition of ρ̃
implies that

ρ(g(x)− h(x)) ≤ cφ(x, 0)

for all x ∈ V . Hence we get

ρ
(
Tg(x)− Th(x)

)
= ρ
( 1

a4
g(ax)− 1

a4
h(ax)

)
≤ Lcφ(x, 0)

for all x ∈ V . Hence we have

ρ̃
(
Tg − Th

)
≤ Lρ̃

(
g − h

)
for all g, h ∈ Sρ̃ such that ρ̃(g−h) ≤ c . Hence T is a ρ̃-stric contraction
with a constant L such that 0 < L < 1 . On letting y = 0 in (4.2), we
have

(4.5) ρ
(
f(ax)− a4f(x)

)
≤ φ(x, 0)
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for all x ∈ V . On replacing x by ax in (4.5), we have

ρ
(
f(a2x)− a4f(ax)

)
≤ φ(ax, 0)

for all x ∈ V . Then

ρ
(( 1

a4

)2
f(a2x)− f(x)

)
≤ 1

a4
ρ
( 1

a4
f(a2x)− a4f(x)

)
≤
( 1

a4

)2[
ρ
(
f(a2x)− a4f(ax)

)
+ ρ
(
a4f(ax)− (a4)2f(x)

)]
≤
( 1

a4

)2[
φ(ax, 0) + k4aφ(x, 0)

]
≤
( 1

a4

)2[
La4φ(x, 0) + a4φ(x, 0)

]
=

1

a4
(L+ 1)φ(x, 0)

for all x ∈ V . By the mathematical induction, we have

ρ
(( 1

a4

)n
f(anx)− f(x)

)
≤ 1

a4
ρ
(( 1

a4

)n−1
f(anx)−

( 1

a4

)n−2
f(an−1x) +

( 1

a4

)n−2
f(an−1x)−

· · · − f(ax) + f(ax)− a4f(x)
)

≤ 1

a4
(1 + L+ · · ·+ Ln−2 + Ln−1 + · · · )φ(x, 0)

=
1

a4
1

1− L
φ(x, 0)

for all n ∈ N and x ∈ V . Also, we have

ρ
(( 1

a4

)n
f(anx)−

( 1

a4

)m
f(amx)

)
≤ 1

a4

[
ρ
(
a4
(( 1

a4

)n
f(anx)− f(x)

))
+ ρ
(
a4
(( 1

a4

)m
f(amx)− f(x)

))]
≤ ρ
(( 1

a4

)n
f(anx)− f(x)

)
+ ρ
(( 1

a4

)m
f(amx)− f(x)

)
≤ 2

a4
1

1− L
φ(x, 0)

for all n ,m ∈ N and x ∈ V . This implies that

ρ̃(Tnf − Tmf) ≤ 2

a4
1

1− L
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for all n, m ∈ N . Hence we may define

δρ̃(f) := sup{ρ̃(Tn(f)− Tm(f)) |n, m ∈ N} .
By definition of δρ̃(f) , we may conclude that δρ̃(f) < ∞ . By Lemma
3.3 of [10], the sequence {Tnf} is ρ̃-convergent to Q ∈ Sρ̃ . Since ρ has
the Fatou property, then ρ̃(Tf − f) < ∞ . On letting x = anx in (4.5),
we have

ρ
(
f(an+1x)− a4f(anx)

)
≤ φ(anx, 0)

for all x ∈ V . Hence

ρ
( 1

a4(n+1)
f(an+1x)− 1

a4n
f(anx)

)
≤ 1

a4(n+1)
φ(anx, 0)

≤ Ln

a4
φ(x, 0) ≤ φ(x, 0)

for all x ∈ V . Therefore ρ̃(TQ − Q) < ∞ . Hence the limit of {Tnf},
Q ∈ Sρ̃ , is a fixed point of the map T ; see [10, Theorem 3.4]. Thus we

have ρ̃(f −Q) ≤ 1
a4(1−L) , that is, we have

ρ(f(x)−Q(x)) ≤ 1

a4(1− L)
φ(x, 0)

for all x ∈ V .

Corollary 4.2. Let a ≥ 2 be an integer number and ε , θ and p < 4
be real numbers. Suppose V is a normed space with norm || · || and
Xρ satisfies the 4a-condition with 4a-constant ka . Let L be a constant
with 0 < L < 1 . If f : V → Xρ satisfies

(4.6) ρ(Daf(x, y)) ≤ ε+ θ(||x||p + ||y||p)
for all x, y ∈ V, then there exists a unique quartic mapping Q : V → Xρ

such that

(4.7) ρ
(
f(x)−Q(x)

)
≤ ε

a4(1− L)
+

θ

a4(1− L)
||x||p

for all x ∈ V.

Proof. On taking φ(x, y) = ε + θ(||x||p + ||y||p) in the Theorem 4.1,
we know that the inequality (4.6) holds. Since L is a constant with
0 < L < 1 and p < 4 , we have

φ(ax, ay) = ap
( ε
ap

+ θ(||x||p + ||y||p)
)

≤ a4L
(
ε+ θ(||x||p + ||y||p)

)
= a4Lφ(x, y)
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for all x, y ∈ V . Hence the inequalities (4.1) are satisfied. According to
(4.3) of Theorem 4.1, the inequality (4.7) holds.
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