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A FIXED POINT APPROACH TO THE STABILITY OF
QUINTIC MAPPINGS IN QUASI β-NORMED SPACES

Heejeong Koh*

Abstract. We investigate the general solution of the following
functional equation and the generalized Hyers-Ulam-Rassias sta-
bility problem in quasi β-normed spaces and then the stability by
using alternative fixed point method for the following quintic func-
tion f : X → Y such that

f(3x + y) + f(3x− y) + 5[f(x + y) + f(x− y)]

= 4[f(2x + y) + f(2x− y)] + 2f(3x)− 246f(x) ,

for all x, y ∈ X .

1. Introduction

More than a half century ago, Ulam [23] proposed the famous problem
concerning the stability of group homomorphisms as follows:Let G1 be
a group and let G2 be a metric group with the metric d(·, ·). Given
ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 then
there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all
x ∈ G1? In other words, when is it true that a mapping satisfying a
functional equation approximately must be close to the solution of the
given functional equation ? In 1941, Hyers [9] considered the case of
approximately additive mappings under the assumption that G1 and G2

are Banach spaces.
The famous Hyers stability result that appeared in [9] was generalized

by Aoki [1] for the stability of the additive mapping involving a sum of
powers of p-norms. In 1978, Rassias [16] provided a generalization of
Hyers’ Theorem for the stability of the linear mapping, which allows the
Cauchy difference to be unbounded. He considered a mapping f : X →

Received July 15, 2013; Accepted September 27, 2013.
2010 Mathematics Subject Classification: Primary 39B52; Secondary 47B47.
Key words and phrases: Hyers-Ulam-Rassias stability, functional equation, quintic

mapping, quasi β-mormed space, alternative fixed point.



758 Heejeong Koh

Y satisfying the condition ||f(x + y) − f(x) − f(y)|| ≤ ε(||x||p + ||y||p)
for all x , y ∈ X , where ε ≥ 0 and 0 ≤ p < 1 . This theorem was later
extended for all p 6= 1 and this result of Rassias lead mathematicians
working in stability of functional equations to establish what is known
today as Hyers-Ulam-Rassias stability or Cauchy-Rassias stability as
well as to introduce new definitions of stability concepts. During the last
three decades, several stability problems of a large variety of functional
equations have been extensively studied and generalized by a number
of authors [2],[5],[12],[6],[7],[10],[17],[11],[18],[19], and [20]. In particular,
Cho and et al. [4] introduced the quintic functional equation

2f(2x + y) + 2f(2x− y) + f(x + 2y) + f(x− 2y)

= 20[f(x + y) + f(x− y)] + 90f(x) .
(1.1)

It is easy to see that f(x) = x5 is a solution of (1.1) by virtue of the
identity

2(2x+y)5+2(2x−y)5+(x+2y)5+(x−2y)5 = 20[(x+y)5+(x−y)5]+90x5 .

For this reason, (1.1) is called a quintic functional equation. Also Xu
and et al. [24], Gordji and et al. [8] and Park [14] introduced a quintic
mapping and sextic mapping.

We will use the following definition to prove Hyers-Ulam-Rassias sta-
bility for a quintic functional equation in the quasi β-normed space. Let
β be a real number with 0 < β ≤ 1 and K be either R or C .

Definition 1.1. Let X be a linear space over a field K . A quasi
β-norm || · || is a real-valued function on X satisfying the following
statements:

(1) ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 if and only if x = 0 .
(2) ||λx|| = |λ|β · ||x|| for all λ ∈ K and all x ∈ X .
(3) There is a constant K ≥ 1 such that ||x + y|| ≤ K(||x||+ ||y||) for

all x, y ∈ X .

The pair (X, || · ||) is called a quasi β-normed space if || · || is a quasi
β-norm on X . The smallest possible K is called the modulus of concavity
of || · || . A quasi β-Banach space is a complete quasi-β-normed space.

A quasi β-norm || · || is called a (β, p)-norm (0 < p ≤ 1) if (3) takes
the form ||x + y||p ≤ ||x||p + ||y||p for all x, y ∈ X . In this case, a quasi
β-Banach space is called a (β, p)-Banach space; see [3], [21] and [15].

In this paper, we deal with the following the functional equation:

(1.2) f(3x + y) + f(3x− y) + 5[f(x + y) + f(x− y)]

= 4[f(2x + y) + f(2x− y)] + 2f(3x)− 246f(x) ,
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for all x, y ∈ X . We investigate the general solution of the functional
equation and generalized Hyers-Ulam-Rassias stability problem in quasi
β-normed spaces and then the stability by using a alternative fixed point
method for the function f : X → Y satisfying the equation (1.2).

2. Quintic functional equations

In this section let X and Y be vector spaces and we investigate the
general solution of the functional equation (1.2). Some basic facts on
n-additive symmetric mappings can be found in [24].

Theorem 2.1. A function f : X → Y is a solution of the functional
equation (1.2) if and only if f is of the form f(x) = A5(x) for all x ∈ X ,
where A5(x) is the diagonal of the 5-additive symmetric map A5 : X5 →
Y .

Proof. Suppose f satisfies the functional equation (1.2). Letting x =
y = 0 in the equation (1.2), we have 12f(0) = −235f(0) , that is, f(0) =
0 . Letting x = 0 and replacing y by x in the equation (1.2), we have
f(x) = −f(x) , for all x ∈ X . Hence f is an odd mapping. Putting y = 0
in the equation (1.2), we get f(2x) = 32f(x) , for all x ∈ X . Hence we
have

(2.1) f(2nx) = 32nf(x) ,

for all x ∈ X and n ∈ N . Note that f(x) = 1
32n f(2nx) , for all x ∈ X

and n ∈ N . Now, letting x = y in the equation (1.2), we have f(3x) =
243f(x) for all x ∈ X .

On the other hand, we can rewrite the functional equation (1.2) in
the form

f(x)− 1
240

f(3x + y)− 1
240

f(3x− y) +
1
60

f(2x + y) +
1
60

f(2x− y)

− 1
48

f(x + y)− 1
48

f(x− y) = 0 ,

for all x ∈ X . By [24, Theorem 3.5 and Theorem 3.6] f is a general
polynomial function of degree at most 5, that is, f is of the following
form

f(x) = A5(x) + A4(x) + A3(x) + A2(x) + A1(x) + A0(x)

for all x ∈ X . Note that A0(x) = A0 is an arbitrary element of Y and
Ai(x) is the diagonal of the i-additive symmetric map Ai : Xi → Y for
i = 1, 2, 3, 4, 5 . Since f(0) = 0 and f is odd, we have A0(x) = A0 = 0
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and A4(x) = A2(x) = 0 . It follows that f(x) = A5(x) + A3(x) + A1(x) ,
for all x ∈ X . By (2.1) and An(rx) = rnAn(x) whenever x ∈ X and
r ∈ Q , we obtain

25A5(x) + 23A3(x) + 2A1(x)

= f(2x) = 25f(x) = 25A5(x) + 25A3(x) + 25A1(x) ,

for all x ∈ X . Then A1(x) = −4
5A3(x) , for all x ∈ X . Hence A3(x) =

A1(x) = 0 , for all x ∈ X . Thus f(x) = A5(x) . Conversely, suppose
f(x) = A5(x) for all x ∈ X , where A5(x) is the diagonal of the 5-
additive symmetric map A5 : X5 → Y . We note that

A5(ax + by) = a5A5(x) + b5A5(y) + 5a4bA4,1(x, y) + 10a3b2A3,2(x, y)
+10a2b3A2,3(x, y) + 5ab4A1,4(x, y) ,

for all x , y ∈ X and a , b ∈ Q . The remains of the proof can be easily
checked.

3. Stabilities

Throughout this section, let X be a quasi β-normed space and let
Y be a quasi β-Banach space with a quasi β-norm || · ||Y . Let K be
the modulus of concavity of || · ||Y . We will investigate the generalized
Hyers-Ulam-Rassias stability problem for the functional equation (1.2).
For a given mapping f : X → Y , let

Df(x, y) := f(3x + y) + f(3x− y) + 5[f(x + y) + f(x− y)]
−4[f(2x + y) + f(2x− y)]− 2f(3x) + 246f(x) ,

x, y ∈ X .

Theorem 3.1. Suppose that there exists a mapping φ : X2 → R+ :=
[0,∞) for which a mapping f : X → Y satisfies f(0) = 0 ,

(3.1) ||Df(x, y)||Y ≤ φ(x, y)

and the series
∑∞

j=0

(
K

32β

)j
φ(2jx, 2jy) converges for all x, y ∈ X . Then

there exists a unique quintic mapping Q : X → Y which satisfies the
equation (1.2) and the inequality

(3.2) ||f(x)−Q(x)||Y ≤ K

256β

∞∑

j=0

( K

32β

)j
φ(2jx, 0) ,

for all x ∈ X .
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Proof. By letting y = 0 in the inequality (3.1), we have

||Df(x, 0)||Y = ||256f(x)− 8f(2x)||Y ≤ φ(x, 0) ,(3.3)

that is,

(3.4) ||f(x)− 1
32

f(2x)||Y ≤ 1
256β

φ(x, 0) ,

for all x ∈ X . For any positive integer k ,

(3.5)
∥∥∥
( 1

32

)k
f(2kx)−

( 1
32

)k+1
f(2k+1x)

∥∥∥
Y
≤ 1

256β

1
32kβ

φ(2kx, 0) ,

for all x ∈ X . For any positive integers n and m with n > m ,
(3.6)
∥∥∥
( 1

32

)m
f(2mx)−

( 1
32

)n
f(2nx)

∥∥∥
Y
≤ 1

256β

1
Km−1

n−1∑

j=m

( K

32β

)j
φ(2jx, 0) ,

for all x ∈ X . As n → ∞ , the right-hand side in the inequality (3.6)
close to 0. Hence {

(
1
32

)n
f(2nx)} is a Cauchy sequence in the quasi

β-Banach space Y . Thus we can define a mapping Q : X → Y by

Q(x) = lim
n→∞

( 1
32

)n
f(2nx) ,

for all x ∈ X .
By letting m = 0 in the inequality (3.6), we have

∥∥∥f(x)−
( 1

32

)n
f(2nx)

∥∥∥
Y
≤ K

256β

n−1∑

j=0

( K

32β

)j
φ(2jx, 0) ,(3.7)

for all x ∈ X , n ∈ N . As n →∞ in the inequality (3.7),

||f(x)−Q(x)||Y ≤ K

256β

∞∑

j=0

( K

32β

)j
φ(2jx, 0) ,(3.8)

for all x ∈ X . It satisfies the inequality (3.2). Now, replacing x and y by
2nx and 2ny respectively and dividing by 32βn in the inequality (3.1) ,
we have

( 1
32β

)n
||Df(2nx, 2ny)||Y ≤

( K

32β

)n
φ(2nx, 2ny) ,

for all x, y ∈ X . By taking n → ∞ , the definition of Q implies that
Q satisfies (1.2) for all x, y ∈ X , that is, Q is the quintic mapping.
Next, it remains to show the uniqueness. Assume that there exists
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T : X → Y satisfying (1.2) and (3.2). The Theorem 2.1 implies that
T (2nx) = 25nT (x) and Q(2nx) = 25nQ(x) , for all x ∈ X . Then

||T (x)−Q(x)||Y
=

( 1
32β

)n
||T (2nx)−Q(2nx)||Y

≤
( 1

32β

)n
K

(
||T (2nx)− f(2nx)||Y + ||f(2nx)−Q(2nx)||Y

)

≤ 2K2

256β

∞∑

j=0

( K

32β

)n+j
φ(2n+jx, 0) ,

for all x ∈ X . By letting n →∞ , we immediately have the uniqueness
of Q .

Theorem 3.2. Suppose that there exists a mapping φ : X2 → R+ :=
[0,∞) for which a mapping f : X → Y satisfies

(3.9) ||Df(x, y)||Y ≤ φ(x, y)

and the series
∑∞

j=1

(
32βK

)j
φ(2−jx, 2−jy) converges for all x, y ∈ X .

Then there exists a unique quintic mapping Q : X → Y which satisfies
the equation (1.2) and the inequality

(3.10) ||f(x)−Q(x)||Y ≤ 1
8β

∞∑

j=1

(
32βK

)j
φ(2−jx, 0) ,

for all x ∈ X .

Proof. If x is replaced by 1
2x in the inequality (3.3), then the proof

follows from the proof of Theorem 3.1.

Now, we will investigate the stability of the given qurtic functional
equation (1.2) using the alternative fixed point method. Before pro-
ceeding the proof, we will state the theorem, the alternative of fixed
point.

Definition 3.3. Let X be a set. A function d : X ×X → [0, ∞] is
called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 3.4 ( The alternative of fixed point [13], [22] ). Suppose
that we are given a complete generalized metric space (Ω, d) and a
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strictly contractive mapping T : Ω → Ω with Lipschitz constant L .
Then for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

1. d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
2. The sequence (Tnx) is convergent to a fixed point y∗ of T ;
3. y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0x, y) < ∞} ;

4. d(y, y∗) ≤ 1
1−L d(y, Ty) for all y ∈ 4 .

Theorem 3.5. Let f : X → Y be a function with f(0) = 0 for which
there exists a function φ : X2 → [0,∞) such that there exists a constant
L , 0 < L < 1 , satisfying the inequalities

(3.11) ‖ Df(x, y) ‖Y≤ φ(x, y)

φ(2x, 2y) ≤ 32βLφ(x, y) ,

for all x, y ∈ X . Then there exists a unique quintic function Q : X → Y

defined by limn→∞
f(2nx)

32n = Q(x) such that

(3.12) ‖ f(x)−Q(x) ‖Y≤ 1
256β(1− L)

φ(x, 0) ,

for all x ∈ X .

Proof. Consider the set

Ω = {g | g : X → Y , g(0) = 0}
and introduce the generalized metric on Ω ,

d(g, h) = inf{µ ∈ (0,∞) | ‖ g(x)− h(x) ‖Y≤ µφ(x, 0) , for all x ∈ X} .

It is easy to show that (Ω, d) is complete. Now we define a function
T : Ω → Ω by

Tg(x) =
1
32

g(2x) , g ∈ Ω

for all x ∈ X . Note that for all g, h ∈ Ω , let µ ∈ (0, ∞) be an arbitrary
constant with d(g, h) ≤ µ . Then
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‖ g(x)− h(x) ‖Y≤ µφ(x, 0) , for all x ∈ X ,

⇒
∥∥∥ 1
32

g(2x)− 1
32

h(2x)
∥∥∥

Y
≤ 1

32β
µφ(2x, 0) , for all x ∈ X ,

⇒
∥∥∥ 1
32

g(2x)− 1
32

h(2x)
∥∥∥

Y
≤ Lµφ(x, 0) , for all x ∈ X ,

⇒ d(Tg, Th) ≤ Lµ .

Hence we have that

d(Tg, Th) ≤ Ld(g, h) ,

for all g, h ∈ Ω , that is, T is a strictly self-mapping of Ω with the
Lipschitz constant L . By setting y = 0 in the inequality (3.11) and
dividing both sides by 256β, then we have

∥∥∥f(x)− 1
32

f(2x)
∥∥∥

Y
≤ 1

256β
φ(x, 0) ,

for all x ∈ X , that is, d(Tf, f) ≤ 1
256β < ∞ . We can apply the fixed

point alternative and since limr→∞ d(T rf, Q) = 0 , there exists a fixed
point Q of T in Ω such that

(3.13) Q(x) = lim
n→∞

f(2x)
32n

,

for all x ∈ X . Letting x = 2nx and y = 2ny in the equation (3.11) and
dividing by 23nβ ,

‖ DQ(x, y) ‖Y = lim
n→∞

‖ Df(2nx, 2ny) ‖Y

32nβ

≤ lim
n→∞

1
32nβ

φ(2nx, 2ny)

≤ lim
n→∞Lnφ(x, y) = 0 ,

for all x, y ∈ X ; that is it satisfies the equation (1.2). Hence the Q is
quintic. Also, the fixed point alternative guarantees that such a Q is the
unique function. Again using the fixed point alternative, we have

d(f, Q) ≤ 1
1− L

d(Tf, f) .

Hence we may conclude that

d(f, Q) ≤ 1
1− L

d(Tf, f) ≤ 1
256β(1− L)

,

which implies the equation (3.12).
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Theorem 3.6. Let f : X → Y be a function with f(0) = 0 for which
there exists a function φ : X2 → [0,∞) such that there exists a constant
L , 0 < L < 1 , satisfying the inequalities

(3.14) ‖ Df(x, y) ‖Y≤ φ(x, y)

φ(x, y) ≤ L

32β
φ(2x, 2y) ,

for all x, y ∈ X . Then there exists a unique quintic function Q : X → Y
defined by limn→∞ 32nf( 1

2n x) = Q(x) such that

(3.15) ‖ f(x)−Q(x) ‖Y≤ L

256β(1− L)
φ(x, 0) ,

for all x ∈ X .

Proof. We will use the same notation for Ω and d as in the proof of
Theorem 3.5 and then we define a function T : Ω → Ω by

Tg(x) = 32 g(
x

2
) , g ∈ Ω

for all x ∈ X . Then

||Tg(x)− Th(x)||Y = 32β
∥∥∥g(

x

2
)− h(

x

2
)
∥∥∥

Y

≤ 32βKφ(
x

2
, 0) ≤ LKφ(x, 0) ,

for all x ∈ X , that is, d(Tg, Th) ≤ LK . Hence d(Tg, Th) ≤ Ld(g, h) , for
any g, h ∈ Ω . Thus T is a strictly self-mapping of Ω with the Lipschitz
constant L . By letting x = x

2 and y = 0 in the inequality (3.14) and
dividing both sides by 8β , then

∥∥∥f(x)− 32f(
x

2
)
∥∥∥

Y
≤ 1

8β
φ(

x

2
, 0) ≤ L

256β
φ(x, 0) ,

for all x ∈ X . Hence d(Tf, f) ≤ L
256β < ∞ . The remains follows from

the proof of Theorem 3.5.
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