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ON THE STABILITY OF RADICAL FUNCTIONAL

EQUATIONS IN QUASI-β-NORMED SPACES

Yeol Je Cho, Madjid Eshaghi Gordji, Seong Sik Kim, and Youngoh Yang

Abstract. In this paper, we prove the generalized Hyers-Ulam stability
results controlled by considering approximately mappings satisfying con-
ditions much weaker than Hyers and Rassias conditions for radical qua-
dratic and radical quartic functional equations in quasi-β-normed spaces.

1. Introduction

In 1960, the stability problem of functional equations originated from the
question of Ulam [44] concerning the stability of group homomorphisms. The
famous Ulam stability problem was partially solved by Hyers [22] in Banach
spaces. Hyers’s theorem was generalized by Aoki [2] for additive mapping and
by Rassias [31] for linear mapping by considering unbounded Cauchy differ-
ences. Rassias [32], [35] provided a generalization of Hyers’ theorem by proving
the existence of unique linear mappings near approximate additive mappings.
On the other hand, Rassias [36], [37] considered the Cauchy difference con-
trolled by a product of different powers of norm. The above results has been
generalized by Forti [13] and Gǎvruta [15] who permitted the Cauchy differ-
ence to become arbitrary unbounded. Gajda and Ger [14] showed that one
can get analogous stability results for subadditive multifunctions. Gruber [21]
remarked that Ulam’s problem is of particular interest in probability theory
and in the case of functional equations of different types. During the last two
decades, a number of papers and research monographs have been published on
various generalizations and applications of the generalized Hyers-Ulam stabil-
ity to a number of functional equations and mappings in various spaces ([1],
[3]-[10], [16], [17], [24], [26], [34], [40], [41]).

The quadratic function f(x) = cx2 satisfies the functional equation

(E) f(x+ y) + f(x− y) = 2f(x) + 2f(y)
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and therefore the equation (E) is called the quadratic functional equation. The
Hyers-Ulam stability theorem for the quadratic functional equation was proved
by Skof [42] and Czerwik [12]. Since then, the stability problem of various
quadratic functional equations have been extensively investigated by a number
of authors ([11], [18], [20], [23], [27], [29], [30], [33], [39]).

Before we present our results, we introduce some basic facts concerning
quasi-β-normed space and some preliminary results. We fix a real number β
with 0 < β ≤ 1 and let K be either R or C. Let X be a linear space over K. A
quasi-β-norm ‖ · ‖ is a real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;
(2) ‖λx‖ = |λ|β · ‖x‖ for all λ ∈ K and x ∈ X ;
(3) there exists a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all

x, y ∈ X .

The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm
on X . The smallest possible K is called the module of concavity of ‖ · ‖. A
quasi-β-Banach space is a complete quasi-β-normed space.

A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if ‖x + y‖p ≤
‖x‖p + ‖y‖p for all x, y ∈ X . In this case, a quasi-β-Banach space is called a
(β, p)-Banach space. For further details on quasi-β-normed spaces and (β, p)-
Banach spaces, refer to the papers [19], [25], [28], [38] and [43].

Recall that a function ϕ : A → B with a domain A and a codomain (B,≤)
which is closed under the addition is a subadditive (superadditive) function if
ϕ(x+ y) ≤ (≥) ϕ(x) + ϕ(y) and a subquadratic (superquadratic) function with
ϕ(0) = 0 if ϕ(x+y)+ϕ(x−y) ≤ (≥) 2ϕ(x)+2ϕ(y) for all x, y ∈ A, respectively.

Let ℓ ∈ {−1, 1} be fixed. If there exists a constant L with 0 < L < 1 such
that a function ϕ : A→ B satisfies

ℓϕ(x+ y) ≤ ℓLℓ(ϕ(x) + ϕ(y))

for all x, y ∈ A, then we say that ϕ is contractively subadditive if ℓ = 1 and ϕ is
expansively superadditive if ℓ = −1. Similarly, if there exists a constant L with
0 < L < 1 such that a function ϕ : A→ B with ϕ(0) = 0 satisfies

ℓϕ(x+ y) + ℓϕ(x− y) ≤ 2ℓLℓ(ϕ(x) + ϕ(y))

for all x, y ∈ A, then we say that ϕ is contractively subquadratic if ℓ = 1 and ϕ
is expansively superquadratic if ℓ = −1.

In this paper, we point out the generalized Hyers-Ulam stability results
controlled by approximately mappings for the radical quadratic and radical
quartic functional equations which is introduced in [27],

(1.1) f(
√
ax2 + by2) = af(x) + bf(y)

and

(1.2) f(
√
ax2 + by2) + f(

√
|ax2 − ay2|) = 2a2f(x) + 2b2f(y)
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in quasi-β-Banach spaces, and new theorems about the generalized Hyers-Ulam
stability by using subadditive and subquadratic functions for those functional
equations in (β, p)-Banach spaces.

2. Stability of the radical quadratic functional equation (1.1)

In this section, we are modified the generalized Hyers-Ulam stability of
radical functional equations (1.1) in quasi-β-normed spaces and (β, p)-Banach
spaces, respectively.

Let X be a normed space and φ : R2 → R+ ∪ {0} be a function. A function
f : R → X is called a φ-approximatively radical quadratic function if

(2.1)
∥∥∥f(

√
ax2 + by2)− af(x)− bf(y)

∥∥∥
X

≤ φ(x, y)

for all x, y ∈ R, where a, b ∈ R
+ are such that a+ b 6= 1.

First, using the idea of Gǎvruta, we prove the generalized Hyers-Ulam sta-
bility of radical functional equations (1.1) in the spirit of Ulam, Hyers and
Rassias.

Theorem 2.1. Let X be a quasi-β-Banach space and f : R → X be a φ-

approximatively radical quadratic function with f(0) = 0. If a function φ :
R

2 → R
+ ∪ {0} satisfies the following:

(2.2)
∞∑

j=0

(
K

2β

)j (
φ
(
0,

√
a

b
2

j
2 x

)
+ φ

(
2

j
2x,

√
a

b
2

j
2x

)
+ φ

(
2

j
2x, 0

)
+ φ

(
2

(j+1)
2 x, 0

))
<∞,

and

(2.3) lim
n→∞

1

2βn
φ
(
2

n
2 x, 2

n
2 y

)
= 0

for all x, y ∈ R, then there exists a unique quadratic mapping F : R → X

satisfying the functional equation (1.1) and the following inequality:
(2.4)∥∥∥f(x)−F(x)

∥∥∥
X

≤ K3

(2a)β

∞∑

j=0

(
K

2β

)j (
φ
(
0,

√
a

b
2

j
2x

)
+ φ

(
2

j
2x,

√
a

b
2

j
2x

)
+ φ

(
2

j
2 x, 0

)
+ φ

(
2

(j+1)
2 x, 0

))

for all x ∈ R.

Proof. Replacing x and y with x√
a
and y√

b
in (2.1), respectively, we get

(2.5)

∥∥∥∥f(
√
x2 + y2)− af

( x√
a

)
− bf

( y√
b

)∥∥∥∥
X

≤ φ
( x√

a
,
y√
b

)

for all x, y ∈ R. Setting x = 0 and y = 0 in (2.5), respectively, we get
∥∥∥∥f(

√
y2)− bf

( y√
b

)∥∥∥∥
X

≤ φ
(
0,

y√
b

)
,

∥∥∥∥f(
√
x2)− af

( x√
a

)∥∥∥∥
X

≤ φ
( x√

a
, 0
)
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for all x, y ∈ R. Then we obtain

(2.6)

∥∥∥∥f(x)−
b

a
f
(√a

b
x
)∥∥∥∥

X

≤ K

aβ

(
φ
(
x, 0

)
+ φ

(
0,

√
a

b
x
))

for all x ∈ R. Also, substituting x and y for x+y√
2a

and x−y√
2b

in (2.1), respectively,

we get

(2.7)

∥∥∥∥f(
√
x2 + y2)− af

(x+ y√
2a

)
− bf

(x− y√
2b

)∥∥∥∥
X

≤ φ
(x+ y√

2a
,
x− y√

2b

)

for all x, y ∈ R. It follows from (2.5) and (2.7) that

(2.8)

∥∥∥∥f
(x+ y√

2a

)
+
b

a
f
(x− y√

2b

)
− f

( x√
a

)
− b

a
f
( y√

b

)∥∥∥∥
X

≤ K

aβ

(
φ
( x√

a
,
y√
b

)
+ φ

(x+ y√
2a

,
x− y√

2b

))

for all x, y ∈ R. Letting x = y =
√
ax in (2.8), we get

(2.9)

∥∥∥∥f(
√
2x)− f(x)− b

a
f
(√a

b
x
)∥∥∥∥

X

≤ K

aβ

(
φ
(
x,

√
a

b
x
)
+ φ

(√
2x, 0

))

for all x ∈ R. It follows from (2.6) and (2.9) that

(2.10)

∥∥∥f(x)− 1

2
f(
√
2x)

∥∥∥
X

≤ K2

(2a)β

(
φ
(
x, 0

)
+ φ

(√
2x, 0

)
+ φ

(
0,

√
a

b
x
)
+ φ

(
x,

√
a

b
x
))

.

Let Φ(x) = K2

(2a)β

(
φ(x, 0) + φ(

√
2x, 0) + φ(0,

√
a
b
x) + φ(x,

√
a
b
x)
)
. Then, by

the iterative method, we get

(2.11)
∥∥∥f(x)− 1

2m
f(2

m
2 x)

∥∥∥
X

≤ K

m−1∑

j=0

(
K

2β

)j

Φ(2
j
2x)

for all x ∈ R and n ∈ Z
+. For all k,m ∈ Z

+ with m > k ≥ 0, we have

(2.12)
∥∥∥ 1

2k
f(2

k
2 x)− 1

2m
f(2

m
2 x)

∥∥∥
X

≤ K

m−1∑

j=k

(
K

2β

)j

Φ(2
j
2x)

for all x ∈ R. By (2.2) and (2.12), the sequence
{

1
2n f(2

n
2 x)

}
is a Cauchy

sequence for all x ∈ R. Since X is the quasi-β-Banach space, it converges for
all x ∈ R. We can define a mapping F : R → X by F(x) := limn→∞

1
2n f(2

n
2 x)

for all x ∈ R. Then, by (2.2)
∥∥∥F(

√
ax+ by)− aF(x)− bF(y)

∥∥∥
X

≤ lim
n→∞

1

2βn
φ(2

n
2 x, f(2

n
2 y) = 0

and F(
√
ax+ by)− aF(x)− bF(y) = 0, that is, F is a quadratic mapping [27].

Taking m → ∞ in (2.12) with k = 0, it follows that F satisfies (2.4) near the
approximate function f of (1.1).



ON THE STABILITY OF RADICAL FUNCTIONAL EQUATIONS 1515

Next, we assume that there exists another quadratic mapping G : R → X

which satisfies the functional equations (1.1) and (2.4). Since G satisfies (1.1),
we have G(2n

2 x) = 2nG(x) for all x ∈ X and n ∈ Z
+. Thus we get

∥∥∥ 1

2n
f(2

n
2 x) − G(x)

∥∥∥
X

≤ 1

2βn
Φ
(
2

n
2 x

)

for all x ∈ R. Letting n → ∞, we establishes F(x) = G(x) for all x ∈ R. This
completes the proof. �

From Theorem 2.1, we obtain the following corollary concerning the stabil-
ity for approximate mappings controlled by a sum of powers of norms and a
product of powers of norms.

Corollary 2.2. Let X be a quasi-β-Banach space, let p, q ∈ R+ ∪ {0}, ε ≥ 0
and f : R → X be a function satisfying the following:

∥∥∥f(
√
ax2 + by2)+af(x)−bf(y)

∥∥∥
X

≤
{
ε|x|p|y|q, p+ q < 2(β − log2K);

ε(|x|p + |y|q), p, q < 2(β − log2K)

for all x, y ∈ R. If a function φ : R2 → R+ ∪ {0} satisfies (2.2) and (2.3), then
there exists a unique quadratic mapping F : R → X satisfying the functional

equation (1.1) and the following inequality:

∥∥∥f(x)−F(x)
∥∥∥
X
≤





εK3

2βaβ · ( a
b
)
q
2 |x|p+q

1−K2
p+q
2

−β
, p+ q < 2(β − log2K);

εK3

2βaβ ·
(

(2+2
p
2 )|x|p

1−K2
p
2
−β

+
2( a

b
)
q
2 |x|q

1−K2
q
2
−β

)
, p, q < 2(β − log2K)

for all x ∈ R.

Theorem 2.3. Let X and f be same as Theorem 2.1. If a function φ : R2 →
R+ ∪ {0} satisfies the following:

∞∑

j=1

(
2βK

)j
(
φ
(
0,

√
a

b
2−

j
2x

)
+φ

(
2−

j
2x,

√
a

b
2−

j
2 x

)
+φ(2−

j
2x, 0)+φ

(
2−

j+1
2 x, 0

))
<∞

and

lim
n→∞

2βnφ
(
2−

n
2 x, 2−

n
2 y

)
= 0

for all x, y ∈ R, then there exists a unique quadratic mapping F : R → X

satisfying the functional equation (1.1) and the following inequality:
(2.13)

‖f(x)−F(x)‖X

≤ K2

2βaβ

∞∑

j=1

(
2βK

)j
(
φ
(
0,

√
a

b
2−

j
2x

)
+φ

(
2−

j
2x,

√
a

b
2−

j
2 x

)
+φ(2−

j
2x, 0)+φ

(
2−

j+1
2 x, 0

))

for all x ∈ R.
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Proof. If x is replaced with x√
2
in (2.10), then the proof follows from the proof

of Theorem 2.1. �

Corollary 2.4. Let X, p, q and ε ≥ 0 be as Corollary 2.2. If a function f :
R → X satisfies the following inequality:

∥∥∥f(
√
ax2+by2)+af(x)−bf(y)

∥∥∥
X

≤
{
ε|x|p|y|q, 2(β + log2K) < p+ q;

ε(|x|p + |y|q), 2(β + log2K) < p, q

for all x, y ∈ R, then there exists a unique quadratic mapping F : R → X

satisfying the functional equation (1.1) and the following inequality:

∥∥∥f(x)−F(x)
∥∥∥
X

≤





εK3

2βaβ · ( a
b
)
q
2 |x|p+q

2
p+q
2

−β−K
, 2(β + log2K)<p+ q;

εK3

2βaβ ·
(

(2+2
−p
2 )|x|p

2
p
2
−β−K

+
2( a

b
)
q
2 |x|q

2
q
2
−β−K

)
, 2(β + log2K)<p, q

for all x ∈ R.

Now, we investigate the generalized Hyers-Ulam stability of radical func-
tional equations (1.1) in (β, p)-Banach spaces using contractively subadditive
and expansively superadditive.

Theorem 2.5. Let X be a (β, p)-Banach space and f : R → X be a φ-

approximatively radical quadratic function with f(0) = 0. Assume that the

function φ is contractively subadditive with a constant L satisfying 21−2βL < 1.
Then there exists a unique quadratic mapping F : R → X satisfying the func-

tional equation (1.1) and the following inequality:

(2.14)
∥∥∥f(x) −F(x)

∥∥∥
X

≤
̂̂
Φ(x)

p
√
(4a)βp − (2aβL)p

for all x ∈ R, where

Φ̂(x) = φ(x, 0) + φ(
√
2x, 0) + φ

(
0,

√
a

b
x
)
+ φ

(
x,

√
a

b
x
)

and
̂̂
Φ(x) = K3(2βΦ̂(x) + Φ̂(

√
2x)).

Proof. It follows from (2.10) in the proof of Theorem 2.1 that

(2.15)

∥∥∥2f(x)− f(
√
2x)

∥∥∥
X

≤ K2

aβ

(
φ
(
x, 0

)
+ φ

(√
2x, 0

)
+ φ

(
0,

√
a

b
x
)
+ φ

(
x,

√
a

b
x
))

.

Let Φ̂(x) = φ(x, 0) + φ(
√
2x, 0) + φ(0,

√
a
b
x) + φ(x,

√
a
b
x). Then we obtain

(2.16)
∥∥∥f(x)− 1

4
f(2x)

∥∥∥
X

≤ 1

(4a)β
̂̂
Φ(x),
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where
̂̂
Φ(x) = K3(2βΦ̂(x) + Φ̂(

√
2x)). It follows from (2.16) with 2jx in the

place of x and the iterative method that

∥∥∥∥
1

4k
f(2kx)− 1

4m
f(2mx)

∥∥∥∥
p

X

≤
m−1∑

j=k

1

4βpj

∥∥∥∥f(2
jx)− 1

4
f(2j+1x)

∥∥∥∥
p

X

≤ 1

(4a)βp

m−1∑

j=k

1

4jβp
̂̂
Φ(2jx)p

≤




̂̂
Φ(x)

4βaβ




p
m−1∑

j=k

(
21−2βL

)jp

(2.17)

for all x ∈ R and m, k ∈ Z
+ with m > k ≥ 0. Then the sequence

{
1
4n f(2

nx)
}
is

a Cauchy sequence in a (β, p)-Banach space X and so we can define a mapping
F : R → X by

F(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ R. Then we get
∥∥∥F(

√
ax2 + by2)− aF(x)− bF(y)

∥∥∥
p

X
≤ φ(x, y)p lim

n→∞
(21−2βL)np = 0

for all x, y ∈ R. Then F(
√
ax2 + by2) − aF(x) − bF(y) = 0, that is, F is a

quadratic mapping. Taking m → ∞ in (2.17) with k = 0, we can show that
F satisfies (2.14) near the approximate function f of the functional equation
(1.1).

Next, we assume that there exists anther quadratic mapping G : R → X

which satisfies the functional equation (1.1) and (2.14). Then we have

∥∥∥G(x) − 1

4n
f(2nx)

∥∥∥
p

X
≤

̂̂
Φ(x)p

(4a)βp − (2aβL)p
(
21−2βL

)np

for all x ∈ R and n ∈ Z
+. Letting n → ∞, the uniqueness of F follows. This

completes the proof. �

Theorem 2.6. Let X, f, Φ̂(x) be same as in Theorem 2.5. Assume that the

function φ is expansively superadditive with a constant L satisfying 22β−1L <

1. Then there exists a unique quadratic mapping F : R → X satisfying the

functional equation (1.1) and the following inequality:

(2.18)
∥∥∥f(x)−F(x)

∥∥∥
X

≤
̂̂
Φ2(x)

p
√

(2aβL−1)p − (4a)βp

for all x ∈ R, where
̂̂
Φ2(x) = K3

(
Φ̂(2−

1
2 x) + 2βΦ̂(2−1x)

)
.
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Proof. It follows from (2.15) of the proof of Theorem 2.5 that

(2.19)
∥∥f(x)− 4f(2−1x)

∥∥
X

≤ K3

aβ

(
Φ̂(2−

1
2x) + 2βΦ̂(2−1x)

)
=

̂̂
Φ2(x)

a3

for all x ∈ R. Then, in (2.19), replacing x by 2−jx and using the iterative
method, we have

(2.20)
∥∥4kf(2−kx)− 4mf(2−mx)

∥∥p
X

≤
( ̂̂
Φ2(x)

aβ

)p
m−1∑

j=k

(
22β−1L

)jp

for all x ∈ R and k,m ∈ Z
+ with m > k ≥ 0. The remains follow the proof of

Theorem 2.5. This completes the proof. �

3. Stability of the radical quartic functional equation (1.2)

In this section, we are modified the generalized Hyers-Ulam stability of
radical functional equations (1.2) in quasi-β-normed spaces and (β, p)-Banach
spaces, respectively.

Let X be a normed space and ψ : R2 → R+ ∪ {0} be a function. A function
f : R → X is called a ψ-approximatively radical quartic function if

(3.1)
∥∥∥f(

√
ax2 + by2) + f(

√
|ax2 − by2|)− 2a2f(x)− 2b2f(y)

∥∥∥
X

≤ ψ(x, y)

for all x, y ∈ R, where a, b ∈ R
+ are fixed with a2 + b2 6= 1.

First, we prove the generalized Hyers-Ulam stability of the radical functional
equations (1.2) in quasi-β-normed spaces using the idea of Gǎvruta.

Theorem 3.1. Let X be a quasi-β-Banach space and f : R → X be a ψ-

approximatively radical quartic function with f(0) = 0. If a mapping ψ : R2 →
R+ ∪ {0} satisfy the following:
(3.2)
∞∑

j=0

(K
4β

)j
(
ψ
(
0,

√
a

b
2

j
2x

)
+ ψ

(
2

j
2x,

√
a

b
2

j
2x

)
+ ψ

(
2

j
2x, 0

)
+

1

2β
ψ
(
2

j+1
2 x, 0

))
<∞,

and

(3.3) lim
n→∞

1

4βn
ψ
(
2

n
2 x, 2

n
2 y

)
= 0

for all x, y ∈ R, then there exists a unique quartic mapping H : R → X

satisfying the functional equation (1.2) and the following inequality:
(3.4)∥∥∥f(x)−H(x)

∥∥∥
X

≤ K3

(4a2)β

∞∑

j=0

(K
4β

)j
(
ψ
(
0,

√
a

b
2

j
2 x

)
+ψ

(
2

j
2x,

√
a

b
2

j
2x

)
+ψ

(
2

j
2x, 0

)
+

1

2β
ψ
(
2

j+1
2 x, 0

))

for all x ∈ R.
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Proof. Replacing x and y with x√
a
and y√

b
in (3.1), respectively, we get

(3.5)∥∥∥∥f(
√
x2 + y2) + f(

√
|x2 − y2|)− 2a2f

( x√
a

)
− 2b2f

( y√
b

)∥∥∥∥
X

≤ ψ
( x√

a
,
y√
b

)

for all x, y ∈ R. Setting x = y =
√
ax in (3.5), we get

(3.6)

∥∥∥∥f(
√
2ax2)− 2a2f(x)− 2b2f

(√a

b
x
)∥∥∥∥

X

≤ ψ
(
x,

√
a

b
x
)

for all x ∈ R. Replacing x and y with
√
2ax and 0 in (3.5), respectively, we

obtain

(3.7)
∥∥∥f(

√
2ax2)− a2f(

√
2x)

∥∥∥
X

≤ 1

2β
ψ
(√

2x, 0
)

for all x ∈ R. It follows from (3.6) and (3.7) that
(3.8)∥∥∥∥a

2f(
√
2x)− 2a2f(x)− 2b2f

(√a

b
x
)∥∥∥∥

X

≤ K

(
ψ
(
x,

√
a

b
x
)
+

1

2β
ψ
(√

2x, 0
))

for all x ∈ R. Substituting x =
√
ax and y = 0 in (3.5), we get

(3.9)
∥∥∥2f(

√
ax2)− 2a2f(x)

∥∥∥
X

≤ ψ (x, 0)

for all x ∈ R. Also, substituting x = 0 and y =
√
ax in (3.5), we get

(3.10)

∥∥∥∥2f(
√
ax2)− 2b2f(

√
a

b
x)

∥∥∥∥
X

≤ ψ
(
0,

√
a

b
x
)

for all x ∈ R. It follows from (3.9) and (3.10) that

(3.11)

∥∥∥∥2b
2f(

√
a

b
x)− 2a2f(x)

∥∥∥∥
X

≤ K

(
ψ
(
x, 0

)
+ ψ

(
0,

√
a

b
x
))

for all x ∈ R. It follows from (3.8) and (3.11) that

(3.12)

∥∥∥∥f(x)−
1

4
f(2

1
2x)

∥∥∥∥
X

≤ K2

(4a2)β

(
ψ
(
0,

√
a

b
x
)
+ ψ

(
x,

√
a

b
x
)
+ ψ

(
x, 0

)
+

1

2β
ψ
(
2

1
2x, 0

))

for all x ∈ R. Let Ψ(x) = ψ(0,
√

a
b
x) + ψ(x,

√
a
b
x) + ψ(x, 0) + 1

2βψ(2
1
2x, 0).

Then, for all m, k ∈ Z+ with m > k ≥ 0, we get

(3.13)

∥∥∥∥
1

4k
f(2

k
2 x)− 1

4m
f(2

m
2 x)

∥∥∥∥
X

≤ K3

(4a2)β

m−1∑

j=k

(K
2β

)j

Ψ(2
j
2 x)

for all x ∈ R. From (3.2) and (3.13), the sequence
{

1
4n f(2

n
2 x)

}
is a Cauchy

sequence for all x ∈ R. Since X is the (β, p)-Banach space X , it converges and
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so we can define a mapping H : R → X by

H(x) := lim
n→∞

1

4n
f(2

n
2 x)

for all x ∈ R. The remains are similar to that of Theorem 2.1. This completes
the proof. �

Theorem 3.2. Let f : R → X be a ψ-approximatively radical quadratic func-

tion. If a mapping ψ : R2 → R+ ∪ {0} satisfies the following:

∞∑

j=1

(
4βK

)j
(
ψ
(
0,

√
a

b
2−

j
2 x

)
+ ψ

(
2−

j
2 x,

√
a

b
2−

j
2x

)
+ ψ

(
2−

j
2x, 0

)
+

1

2β
ψ
(
2−

j+1
2 x, 0

))
<∞

and

lim
n→∞

2nψ
(
2−

n
2 x, 2−

n
2 y

)
= 0

for all x, y ∈ R, then there exists a unique quadratic mapping H : R → X

satisfying the functional equation (1.2) and the following inequality:
(3.14)∥∥∥f(x)−H(x)

∥∥∥
X

≤ K2

(4a2)β

∞∑

j=1

(
4βK

)j
(
ψ
(
0,

√
a

b
2−

j
2x

)
+ψ

(
2−

j
2x,

√
a

b
2−

j
2x

)
+ψ

(
2−

j
2x, 0

)
+

1

2β
ψ
(
2−

j+1
2 x, 0

))

for all x ∈ R.

Proof. If x is replaced with x√
2
in the inequality (3.12), then the proof follows

from that of Theorem 3.1. �

Corollary 3.3. For any p, q ∈ R+ ∪ {0} and ε ≥ 0, if a function f : R → X

satisfies the following inequality:

∥∥∥f(
√
ax2 + by2)+f(

√
|ax2 − by2|)−2a2f(x)−2b2f(y)

∥∥∥
X

≤
{
ε|x|p|y|q;
ε(|x|p + |y|q)

for all x, y ∈ R, then there exists a unique quartic mapping H : R → X

satisfying the functional equation (1.2) and the following inequality:

‖f(x)−H(x)‖X ≤





εK3
√

( a
b
)q|x|p+q

a2β(4β−K
√

2p+q)
, p+ q < 4β−2 log2K;

εK3

a2β

(
(2+

√
2p)|x|r

4β−K
√
2p

+
2
√

(a
b
)q|x|q

4β−K
√
2q

)
, p, q < 4β−2 log2K

for all x ∈ R.

Now, we prove the generalized Hyers-Ulam stability of the radical functional
equations (1.2) in (β, p)-Banach spaces using contractively subquadratic and
expansively superquadratic.
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Theorem 3.4. Let X be a (β, p)-Banach space and f : R → X be a ψ-

approximatively radical quadratic function with f(0) = 0. Assume that the

function ψ is contractively subquadratic with a constant L satisfying 22−4βL <

1. Then there exists a unique quartic mapping H : R → X satisfying the

functional equation (1.2) and the following inequality:

(3.15)
∥∥∥f(x)−H(x)

∥∥∥
X

≤
̂̂
Ψ(x)

p
√
(16a2)βp − (4a2βL)p

,

where

Ψ̂(x) = ψ(x, 0) + ψ
(
0,

√
a

b
x
)
+ ψ

(
x,

√
a

b
x
)
+

1

2β
ψ(

√
2x, 0)

and
̂̂
Ψ(x) = K3

(
4βΨ̂(x) + Ψ̂(

√
2x)

)

for all x ∈ R.

Proof. Using (3.12) in the proof of Theorem 3.1, we have

(3.16)

∥∥∥∥f(x)−
1

16
f(2x)

∥∥∥∥
X

≤ K3(4βΨ̂(x) + Ψ̂(
√
2x))

(4a)2β
=

̂̂
Ψ(x)

(4a)2β

for all x ∈ R. Then, in (3.16), replacing x by 2−jx and using the iterative
method, we have

∥∥∥∥
1

16k
f(2kx)− 1

16m
f(2mx)

∥∥∥∥
p

X

≤
m−1∑

j=k

∥∥∥∥
1

16j
f(2jx)− 1

16j+1
f(2j+1x)

∥∥∥∥
p

X

≤
( 1

4a

)2βp m−1∑

j=k

1

16βpj
̂̂
Ψ(2jx)p

≤
( ̂̂
Ψ(x)

4a

)2βp m−1∑

j=k

(
22−4βL

)jp

(3.17)

for all x ∈ R and m, k ∈ Z
+ with m > k ≥ 0. The sequence

{
1

16n f(2
nx)

}
is a

Cauchy sequence for all x ∈ R. Since X is a (β, p)-Banach space, it converges
for all x ∈ R. Then we can define a mapping H : R → X by

H(x) := lim
n→∞

1

16n
f(2nx)

for all x ∈ R. The remains are similar to the proof of Theorem 2.5. This
completes the proof. �

Theorem 3.5. Let X, f, Ψ̂ be same as in Theorem 3.4. Assume that the func-

tion ψ is expansively superquadratic with a constant L satisfying 24β−2L < 1.
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Then there exists a unique quartic mapping H : R → X satisfying the functional

equation (1.2) and the following inequality:

(3.18) ‖f(x)−H(x)‖X ≤
̂̂
Ψ2(x)

p
√
(4a2βL−1)p − (16a2)βp

for all x ∈ R, where
̂̂
Ψ2(x) = K3

(
Φ̂(2−

1
2x) + 4βΦ̂(2−1x)

)
.

Proof. It follows from (3.12) in the proof of Theorem 3.1 that
∥∥f(x)− 16f(2−1x)

∥∥
X

≤ 1

a2β
̂̂
Ψ2(2

−1x)

for all x ∈ R and so

(3.19)
∥∥16kf(2−kx)− 16mf(2−mx)

∥∥p

X
≤

( ̂̂
Ψ2(x)

a2β

)p
m−1∑

j=k

(
24β−2L

)jp

for all x ∈ R and k,m ∈ Z
+ with m > k ≥ 0. The remains follow the proof of

Theorem 3.1. This completes the proof. �
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[15] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately ad-

ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.
[16] M. Eshaghi Gordji and H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of

quadratic functional equations, Abstr. Appl. Anal. 2009 (2009), Article ID 923476, 11
pp.

[17] , Radical functional equations in C*-algebras, submitted.
[18] , Nearly radical quadratic functional equations in p-2-normed spaces, Abstr.

Appl. Anal. 2012 (2012), Article ID 896032, 10 pp.
[19] M. Eshaghi Gordji, H. Khodaei, and H. M. Kim, Approximate quartic and quadratic

mappings in quasi-Banach spaces, Int. J. Math. Math. Sci. 2011 (2011), Artical ID
734567, 18 pp.

[20] M. Eshaghi Gordji and M. Parviz, On the Hyers-Ulam-Rassias stability of the functional

equation f(
√

x2 + y2) = f(x) + f(y), Nonlinear Funct. Anal. Appl. 14 (2009), no. 3,
413–420.

[21] P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263–277.
[22] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci.

27 (1941), 222–224.
[23] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Anal-

ysis, Springer, New York, 2011.
[24] S.-M. Jung, D. Popa, and Th. M. Rassias, On the stability of the linear functional

equation in a single variable on complete metric groups, J. Global Optim. 59 (2014),

no. 1, 165–171.
[25] D. S. Kang, On the stability of generalized quartic mappings in quasi-β-normed spaces,

J. Inequal. Appl. 2010 (2010), Article ID 198098, 11 pp.
[26] Pl. Kannappan, Functional Equations in Mathematical Analysis, Springer, New York,

2012.
[27] H. Khodaei, M. Eshaghi Gordji, S. S. Kim, and Y. J. Cho, Approximation of radical

functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl.
397 (2012), no. 1, 284–297.

[28] S. S. Kim, Y. J. Cho, and M. Eshaghi Gordji, On the generalized Ulam-Hyers-Rassias

stability problem of radical functional equations, J. Inequal. Appl. 2012 (2012), no. 186,
13 pp.

[29] C. Park, M. Eshaghi Gordji, and Y. J. Cho, Stability and superstability of generalized

quadratic ternary derivations on non-Archimedean ternary Banach algebras: a fixed

point approach, Fixed Point Theory Appl. 2012 (2012), no. 97, 8 pp.
[30] C. Park, Y. J. Cho, and H. A. Kenary, Orthogonal stability of a generalized quadratic

functional equation in non-Archimedean spaces, J. Comput. Anal. Appl. 14 (2012), no.
3, 526–535.

[31] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 (1978), no. 2, 297–300.

[32] , On the stability of functional equations and a problem of Ulam, Acta Appl.
Math. 62 (2000), no. 1, 23–130.



1524 Y. J. CHO, M. ESHAGHI GORDJI, S. S. KIM, AND Y. O. YANG

[33] , Functional Equations, Inequalities and Applications, Kluwer Academic, Dor-
drecht, 2003.

[34] Th. M. Rassias and J. Brzdek (Eds.), Functional Equations in Mathematical Analysis,
Springer, New York, 2012.
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