STABILITY OF THE JENSEN'S EQUATION IN A HILBERT MODULE OVER A C^{*}-ALGEBRA

Deok-Hoon Boo* and Won-Gil Park**

Abstract

We prove the generalized Hyers-Ulam-Rassias stability of linear operators in a Hilbert module over a unital C^{*}-algebra.

Let E_{1} and E_{2} be Banach spaces. Consider $f: E_{1} \rightarrow E_{2}$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Th.M. Rassias [9] showed that there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$.
In this paper, let A be a unital C^{*}-algebra with norm $|\cdot|, A_{1}=$ $\left\{a \in A||a|=1\}, A_{1}^{+}\right.$the set of positive elements in A_{1}, \mathbb{R}^{+}the set of nonnegative real numbers, and ${ }_{A} \mathcal{H}$ a left Hilbert A-module with norm $\|\cdot\|$. Throughout this paper, assume that (i) $F, G:{ }_{A} \mathcal{H} \rightarrow$ ${ }_{A} \mathcal{H}$ are continuous mappings, and that (ii) $\lim _{n \rightarrow \infty} 3^{-n} F\left(3^{n} x\right)$ and $\lim _{n \rightarrow \infty} 3^{-n} G\left(3^{n} x\right)$ converge uniformly on ${ }_{A} \mathcal{H}$.

We are going to prove the generalized Hyers-Ulam-Rassias stability of linear operators in a Hilbert module over a unital C^{*}-algebra.

[^0]Lemma 1. Let $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ be a mapping for which there exists a function $\varphi:{ }_{A} \mathcal{H} \times{ }_{A} \mathcal{H} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y):=\sum_{k=0}^{\infty} 3^{-k} \varphi\left(3^{k} x, 3^{k} y\right)<\infty, \tag{iii}\\
\left\|2 F\left(\frac{a x+a y}{2}\right)-a F(x)-a F(y)\right\| \leq \varphi(x, y)
\end{gather*}
$$

for all $a \in A_{1}^{+} \cup\{i\}$ and all $x, y \in{ }_{A} \mathcal{H}$. Then there exists a unique bounded A-linear operator $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ such that

$$
\begin{equation*}
\|F(x)-T(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{iv}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{H}$.
Proof. Put $a=1 \in A_{1}^{+}$. By [7, Theorem 1], there exists a unique additive mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfying (iv). The mapping T : ${ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ was given by $T(x)=\lim _{n \rightarrow \infty} \frac{F\left(3^{n} x\right)}{3^{n}}$ for all $x \in{ }_{A} \mathcal{H}$. But $F(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{A} \mathcal{H}$. By the same reasoning as the proof of [9, Theorem], the additive mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is \mathbb{R}-linear.

By the assumption, for each $a \in A_{1}^{+} \cup\{i\}$,
$\left\|2 F\left(3^{n} a x\right)-a F\left(2 \cdot 3^{n-1} x\right)-a F\left(4 \cdot 3^{n-1} x\right)\right\| \leq \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right)$
for all $x \in{ }_{A} \mathcal{H}$. Using the fact that there exists a $K>0$ such that, for each $a \in A$ and each $z \in{ }_{A} \mathcal{H},\|a z\| \leq K|a| \cdot\|z\|$, one can show that

$$
\begin{aligned}
& \left\|\frac{1}{2} a F\left(2 \cdot 3^{n-1} x\right)+\frac{1}{2} a F\left(4 \cdot 3^{n-1} x\right)-a F\left(3^{n} x\right)\right\| \\
& \quad \leq \frac{1}{2} K|a| \cdot\left\|2 F\left(3^{n} x\right)-F\left(2 \cdot 3^{n-1} x\right)-F\left(4 \cdot 3^{n-1} x\right)\right\| \\
& \quad \leq \frac{K}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right)
\end{aligned}
$$

for all $a \in A_{1}^{+} \cup\{i\}$ and all $x \in{ }_{A} \mathcal{H}$. So

$$
\begin{aligned}
\left\|F\left(3^{n} a x\right)-a F\left(3^{n} x\right)\right\| & \leq\left\|F\left(3^{n} a x\right)-\frac{1}{2} a F\left(2 \cdot 3^{n-1} x\right)-\frac{1}{2} a F\left(4 \cdot 3^{n-1} x\right)\right\| \\
& +\left\|\frac{1}{2} a F\left(2 \cdot 3^{n-1} x\right)+\frac{1}{2} a F\left(4 \cdot 3^{n-1} x\right)-a F\left(3^{n} x\right)\right\| \\
& \leq \frac{1}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right) \\
& +\frac{K}{2} \varphi\left(2: 3^{n-1} x, 4 \cdot 3^{n-1} x\right)
\end{aligned}
$$

for all $a \in A_{1}^{+} \cup\{i\}$ and all $x \in{ }_{A} \mathcal{H}$. Thus $3^{-n}\left\|F\left(3^{n} a x\right)-a F\left(3^{n} x\right)\right\| \rightarrow$ 0 as $n \rightarrow \infty$ for all $a \in A_{1}^{+} \cup\{i\}$ and all $x \in{ }_{A} \mathcal{H}$. Hence

$$
T(a x)=\lim _{n \rightarrow \infty} \frac{F\left(3^{n} a x\right)}{3^{n}}=\lim _{n \rightarrow \infty} \frac{a F\left(3^{n} x\right)}{3^{n}}=a T(x)
$$

for each $a \in A_{1}^{+} \cup\{i\}$. So

$$
\begin{aligned}
T(a x)=|a| T\left(\frac{a}{|a|} x\right) & =|a| \frac{a}{|a|} T(x)=a T(x), \quad \forall a \in A^{+}(a \neq 0), \forall x \in{ }_{A} \mathcal{H} \\
T(i x) & =i T(x), \quad \forall x \in{ }_{A} \mathcal{H}
\end{aligned}
$$

For any element $a \in A, a=\frac{a+a^{*}}{2}+i \frac{a-a^{*}}{2 i}$, and $\frac{a+a^{*}}{2}$ and $\frac{a-a^{*}}{2 i}$ are selfadjoint elements, furthermore, $a=\left(\frac{a+a^{*}}{2}\right)^{+}-\left(\frac{a+a^{*}}{2}\right)^{-}+i\left(\frac{a-a^{*}}{2 i}\right)^{+}-$ $i\left(\frac{a-a^{*}}{2 i}\right)^{-}$, where $\left(\frac{a+a^{*}}{2}\right)^{+},\left(\frac{a+a^{*}}{2}\right)^{-},\left(\frac{a-a^{*}}{2 i}\right)^{+}$, and $\left(\frac{a-a^{*}}{2 i}\right)^{-}$are positive elements (see [2, Lemma 38.8]). So

$$
\begin{aligned}
T(a x)= & T\left(\left(\frac{a+a^{*}}{2}\right)^{+} x-\left(\frac{a+a^{*}}{2}\right)^{-} x+i\left(\frac{a-a^{*}}{2 i}\right)^{+} x-i\left(\frac{a-a^{*}}{2 i}\right)^{-} x\right) \\
= & \left(\frac{a+a^{*}}{2}\right)^{+} T(x)+\left(\frac{a+a^{*}}{2}\right)^{-} T(-x)+\left(\frac{a-a^{*}}{2 i}\right)^{+} T(i x) \\
& +\left(\frac{a-a^{*}}{2 i}\right)^{-} T(-i x) \\
= & \left(\frac{a+a^{*}}{2}\right)^{+} T(x)-\left(\frac{a+a^{*}}{2}\right)^{-} T(x)+i\left(\frac{a-a^{*}}{2 i}\right)^{+} T(x) \\
& -i\left(\frac{a-a^{*}}{2 i}\right)^{-} T(x) \\
= & \left(\left(\frac{a+a^{*}}{2}\right)^{+}-\left(\frac{a+a^{*}}{2}\right)^{-}+i\left(\frac{a-a^{*}}{2 i}\right)^{+}-i\left(\frac{a-a^{*}}{2 i}\right)^{-}\right) T(x) \\
= & a T(x)
\end{aligned}
$$

for all $a \in A$ and all $x \in{ }_{A} \mathcal{H}$. Hence

$$
T(a x+b y)=T(a x)+T(b y)=a T(x)+b T(y)
$$

for all $a, b \in A$ and all $x, y \in{ }_{A} \mathcal{H}$. So the unique \mathbb{R}-linear mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is an A-linear operator.

Since $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is continuous and $\lim _{n \rightarrow \infty} 3^{-n} F\left(3^{n} x\right)$ converges uniformly on ${ }_{A} \mathcal{H}$, the A-linear operator $T:_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is continuous. Hence the A-linear operator $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is bounded (see [3, Proposition II.1.1]). So there exists a unique bounded A-linear operator $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfying (iv), as desired.

Theorem 2. Let $F, G:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ be mappings for which there exists a function $\varphi:{ }_{A} \mathcal{H} \times{ }_{A} \mathcal{H} \rightarrow[0, \infty)$ satisfying (iii) such that

$$
\begin{aligned}
& \left\|2 F\left(\frac{a x+a y}{2}\right)-a F(x)-a F(y)\right\| \leq \varphi(x, y) \\
& \left\|2 G\left(\frac{a x+a y}{2}\right)-a G(x)-a G(y)\right\| \leq \varphi(x, y)
\end{aligned}
$$

for all $a \in A_{1}^{+} \cup\{i\}$ and all $x, y \in{ }_{A} \mathcal{H}$. Assume that $F\left(3^{n} x\right)=3^{n} F(x)$ and $G\left(3^{n} x\right)=3^{n} G(x)$ for all positive integers n and all $x \in{ }_{A} \mathcal{H}$. Then the mappings $F, G:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ are bounded A-linear operators. Furthermore,
(1) if the mappings $F, G:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfy the inequalities

$$
\begin{aligned}
& \|F \circ G(x)-x\| \leq \varphi(x, x), \\
& \|G \circ F(x)-x\| \leq \varphi(x, x)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping G is the inverse of the mapping F,
(2) if the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequality

$$
\left\|F(x)-F^{*}(x)\right\| \leq \varphi(x, x)
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a selfadjoint operator,
(3) if the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequality

$$
\left\|F \circ F^{*}(x)-F^{*} \circ F(x)\right\| \leq \varphi(x, x)
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a normal operator,
(4) if the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequalities

$$
\begin{aligned}
& \left\|F \circ F^{*}(x)-x\right\| \leq \varphi(x, x), \\
& \left\|F^{*} \circ F(x)-x\right\| \leq \varphi(x, x)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a unitary operator, and
(5) if the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequalities

$$
\begin{array}{r}
\|F \circ F(x)-F(x)\| \leq \varphi(x, x), \\
\left\|F^{*}(x)-F(x)\right\| \leq \varphi(x, x)
\end{array}
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a projection.

Proof. By the same method as the proof of Lemma 1, one can show that there exists a unique bounded A-linear operator $L:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ such that

$$
\|G(x)-L(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))
$$

for all $x \in{ }_{A} \mathcal{H}$.
By the assumption,

$$
\begin{aligned}
& T(x)=\lim _{n \rightarrow \infty} \frac{F\left(3^{n} x\right)}{3^{n}}=F(x), \\
& L(x)=\lim _{n \rightarrow \infty} \frac{G\left(3^{n} x\right)}{3^{n}}=G(x)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{H}$, where the mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is given in the proof of Lemma 1. Hence the bounded A-linear operators T and L are the mappings F and G, respectively. So the mappings $F, G:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ are bounded A-linear operators.
(1) By the assumption,

$$
\begin{aligned}
& \left\|F \circ G\left(3^{n} x\right)-3^{n} x\right\| \leq \varphi\left(3^{n} x, 3^{n} x\right), \\
& \left\|G \circ F\left(3^{n} x\right)-3^{n} x\right\| \leq \varphi\left(3^{n} x, 3^{n} x\right)
\end{aligned}
$$

for all positive integers n and all $x \in{ }_{A} \mathcal{H}$. Thus

$$
\begin{aligned}
& 3^{-n}\left\|F \circ G\left(3^{n} x\right)-3^{n} x\right\| \rightarrow 0, \\
& 3^{-n}\left\|G \circ F\left(3^{n} x\right)-3^{n} x\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ for all $x \in{ }_{A} \mathcal{H}$. Hence

$$
\begin{aligned}
& F \circ G(x)=\lim _{n \rightarrow \infty} \frac{F \circ G\left(3^{n} x\right)}{3^{n}}=x, \\
& G \circ F(x)=\lim _{n \rightarrow \infty} \frac{G \circ F\left(3^{n} x\right)}{3^{n}}=x
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{H}$. So the mapping G is the inverse of the mapping F.
(2) By the assumption,

$$
\left\|F\left(3^{n} x\right)-F^{*}\left(3^{n} x\right)\right\| \leq \varphi\left(3^{n} x, 3^{n} x\right)
$$

for all positive integers n and all $x \in{ }_{A} \mathcal{H}$. Thus $3^{-n} \| F\left(3^{n} x\right)-$ $F^{*}\left(3^{n} x\right) \| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in{ }_{A} \mathcal{H}$. Hence

$$
F(x)=\lim _{n \rightarrow \infty} \frac{F\left(3^{n} x\right)}{3^{n}}=\lim _{n \rightarrow \infty} \frac{F^{*}\left(3^{n} x\right)}{3^{n}}=F^{*}(x)
$$

for all $x \in{ }_{A} \mathcal{H}$. So the mapping F is a self-adjoint operator.
The proofs of the other items are similar to the proofs of (1) and (2).

From now on, we denote by $A_{i n}$ the set of invertible elements in A, and assume that A has real rank 0 , which means that the set of invertible self-adjoint elements in A is dense in the set of self-adjoint elements in A (see $[1,4]$).

Theorem 3. Let $F:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ be a mapping for which there exists a function $\varphi:{ }_{A} \mathcal{H} \times{ }_{A} \mathcal{H} \rightarrow[0, \infty)$ satisfying (iii) such that

$$
\left\|2 F\left(\frac{a x+a y}{2}\right)-a F(x)-a F(y)\right\| \leq \varphi(x, y)
$$

for all $a \in\left(A_{\text {in }} \cap A_{1}^{+}\right) \cup\{i\}$ and all $x, y \in{ }_{A} \mathcal{H}$. Then there exists a unique bounded A-linear operator $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfying (iv).

Proof. By the same reasoning as the proof of Lemma 1, there exists a unique \mathbb{R}-linear mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfying (iv).

By the same method as the proof of Lemma 1, one can show that

$$
\begin{equation*}
T(a x)=\lim _{n \rightarrow \infty} 3^{-n} F\left(3^{n} a x\right)=\lim _{n \rightarrow \infty} 3^{-n} a F\left(3^{n} x\right)=a T(x) \tag{1}
\end{equation*}
$$

for all $a \in\left(A_{\text {in }} \cap A_{1}^{+}\right) \cup\{i\}$ and all $x \in{ }_{A} \mathcal{H}$.
Let $b \in A_{1}^{+} \backslash A_{i n}$. Since $A_{i n} \cap A_{s a}$ is dense in $A_{s a}$, there exists a sequence $\left\{b_{m}\right\}$ in $A_{i n} \cap A_{s a}$ such that $b_{m} \rightarrow b$ as $m \rightarrow \infty$, where $A_{s a}$ denotes the set of self-adjoint elements in A. Put $c_{m}=\frac{1}{\left|b_{m}\right|} b_{m}$. Then $c_{m} \rightarrow \frac{1}{|b|} b=b$ as $m \rightarrow \infty$ and $c_{m} \in A_{i n} \cap A_{1}$. Put $a_{m}=\sqrt{c_{m}{ }^{*} c_{m}}$. Then $a_{m} \rightarrow \sqrt{b^{*} b}=b$ as $m \rightarrow \infty$ and $a_{m} \in A_{i n} \cap A_{1}^{+}$. Thus there exists a sequence $\left\{a_{m}\right\}$ in $A_{i n} \cap A_{1}^{+}$such that $a_{m} \rightarrow b$ as $m \rightarrow \infty$, and so

$$
\begin{align*}
\lim _{m \rightarrow \infty} T\left(a_{m} x\right) & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} 3^{-n} F\left(3^{n} a_{m} x\right) \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} 3^{-n} F\left(3^{n} a_{m} x\right) \text { by (ii) } \\
& =\lim _{n \rightarrow \infty}\left(3^{-n} F\left(3^{n} \lim _{m \rightarrow \infty} a_{m} x\right)\right) \text { by (i) } \tag{2}\\
& =\lim _{n \rightarrow \infty} 3^{-n} F\left(3^{n} b x\right) \\
& =T(b x)
\end{align*}
$$

for all $x \in{ }_{A} \mathcal{H}$. By (1),

$$
\begin{equation*}
\left\|T\left(a_{m} x\right)-b T(x)\right\|=\left\|a_{m} T(x)-b T(x)\right\| \rightarrow\|b T(x)-b T(x)\|=0 \tag{3}
\end{equation*}
$$

as $m \rightarrow \infty$. By (2),

$$
\begin{equation*}
\left\|3^{-n} F\left(3^{n} a_{m} x\right)-T\left(a_{m} x\right)\right\| \rightarrow\left\|3^{-n} F\left(3^{n} b x\right)-T(b x)\right\| \tag{4}
\end{equation*}
$$

as $m \rightarrow \infty$. By (3) and (4),

$$
\begin{align*}
\|T(b x)-b T(x)\| \leq & \left\|T(b x)-3^{-n} F\left(3^{n} b x\right)\right\| \\
& +\left\|3^{-n} F\left(3^{n} b x\right)-3^{-n} F\left(3^{n} a_{m} x\right)\right\| \\
& +\left\|3^{-n} F\left(3^{n} a_{m} x\right)-T\left(a_{m} x\right)\right\| \\
& +\left\|T\left(a_{m} x\right)-b T(x)\right\| \tag{5}\\
\rightarrow & \left\|T(b x)-3^{-n} F\left(3^{n} b x\right)\right\| \\
& +\left\|3^{-n} F\left(3^{n} b x\right)-T(b x)\right\| \text { as } m \rightarrow \infty \\
\rightarrow & 0 \text { as } n \rightarrow \infty
\end{align*}
$$

for all $x \in{ }_{A} \mathcal{H}$. By (1) and (5),

$$
T(a x)=a T(x)
$$

for all $a \in A_{1}^{+} \cup\{i\}$ and all $x \in{ }_{A} \mathcal{H}$.
The rest of the proof is similar to the proof of Lemma 1. So the unique \mathbb{R}-linear mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a bounded A-linear operator satisfying (iv).

Replacing $A_{1}^{+} \cup\{i\}$ in the statement of Theorem 2 by $\left(A_{i n} \cap A_{1}^{+}\right) \cup$ $\{i\}$, one can obtain the same results as Theorem 2, under the assumption that A has real rank 0 .

References

1. B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of noncommutative tori, K-Theory 6 (1992), 267-284.
2. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
3. J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1985.
4. K.R. Davidson, C^{*}-Algebras by Example, Fields Institute Monographs, vol. 6, Amer. Math. Soc., Providence, R.I., 1996.
5. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
6. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Berlin, Basel and Boston, 1998.
7. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
8. P.S. Muhly and B. Solel, Hilbert modules over operator algebras, Memoirs Amer. Math. Soc. 117 No. 559 (1995), 1-53.
9. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Deok-Hoon Boo

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: dhboo@math.cnu.ac.kr
**
Won-Gil Park
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: wgpark@math.cnu.ac.kr

[^0]: Received by the editors on May 23, 2002
 2000 Mathematics Subject Classifications: Primary 47J25, 39B72, 46L05..
 Key words and phrases: bounded A-linear operator, Hilbert module over C^{*} algebra, real rank 0..

