STABILITY OF THE JENSEN'S EQUATION IN A HILBERT MODULE OVER A C*-ALGEBRA

DEOK-HOON BOO* AND WON-GIL PARK**

ABSTRACT. We prove the generalized Hyers-Ulam-Rassias stability of linear operators in a Hilbert module over a unital C^* -algebra.

Let E_1 and E_2 be Banach spaces. Consider $f: E_1 \to E_2$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\epsilon \geq 0$ and $p \in [0,1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. Th.M. Rassias [9] showed that there exists a unique \mathbb{R} -linear mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in E_1$.

In this paper, let A be a unital C^* -algebra with norm $|\cdot|$, $A_1 = \{a \in A \mid |a| = 1\}$, A_1^+ the set of positive elements in A_1 , \mathbb{R}^+ the set of nonnegative real numbers, and ${}_A\mathcal{H}$ a left Hilbert A-module with norm $\|\cdot\|$. Throughout this paper, assume that (i) $F,G:{}_A\mathcal{H} \to {}_A\mathcal{H}$ are continuous mappings, and that (ii) $\lim_{n\to\infty} 3^{-n}F(3^nx)$ and $\lim_{n\to\infty} 3^{-n}G(3^nx)$ converge uniformly on ${}_A\mathcal{H}$.

We are going to prove the generalized Hyers-Ulam-Rassias stability of linear operators in a Hilbert module over a unital C^* -algebra.

Received by the editors on May 23, 2002.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 47J25, 39B72, 46L05...

Key words and phrases: bounded A-linear operator, Hilbert module over C^* -algebra, real rank 0..

LEMMA 1. Let $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be a mapping for which there exists a function $\varphi: {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ such that

(iii)
$$\widetilde{\varphi}(x,y):=\sum_{k=0}^{\infty}3^{-k}\varphi(3^kx,3^ky)<\infty,$$

$$\|2F(\frac{ax+ay}{2})-aF(x)-aF(y)\|\leq\varphi(x,y)$$

for all $a \in A_1^+ \cup \{i\}$ and all $x, y \in {}_{A}\mathcal{H}$. Then there exists a unique bounded A-linear operator $T : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ such that

(iv)
$$||F(x) - T(x)|| \le \frac{1}{3} (\widetilde{\varphi}(x, -x) + \widetilde{\varphi}(-x, 3x))$$

for all $x \in {}_{A}\mathcal{H}$.

Proof. Put $a = 1 \in A_1^+$. By [7, Theorem 1], there exists a unique additive mapping $T : {}_A\mathcal{H} \to {}_A\mathcal{H}$ satisfying (iv). The mapping $T : {}_A\mathcal{H} \to {}_A\mathcal{H}$ was given by $T(x) = \lim_{n \to \infty} \frac{F(3^n x)}{3^n}$ for all $x \in {}_A\mathcal{H}$. But F(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in {}_A\mathcal{H}$. By the same reasoning as the proof of [9, Theorem], the additive mapping $T : {}_A\mathcal{H} \to {}_A\mathcal{H}$ is \mathbb{R} -linear.

By the assumption, for each $a \in A_1^+ \cup \{i\}$,

$$||2F(3^nax) - aF(2 \cdot 3^{n-1}x) - aF(4 \cdot 3^{n-1}x)|| \le \varphi(2 \cdot 3^{n-1}x, 4 \cdot 3^{n-1}x)$$

for all $x \in {}_{A}\mathcal{H}$. Using the fact that there exists a K > 0 such that, for each $a \in A$ and each $z \in {}_{A}\mathcal{H}$, $||az|| \leq K|a| \cdot ||z||$, one can show that

$$\begin{split} \|\frac{1}{2}aF(2\cdot 3^{n-1}x) + \frac{1}{2}aF(4\cdot 3^{n-1}x) - aF(3^{n}x)\| \\ &\leq \frac{1}{2}K|a|\cdot \|2F(3^{n}x) - F(2\cdot 3^{n-1}x) - F(4\cdot 3^{n-1}x)\| \\ &\leq \frac{K}{2}\varphi(2\cdot 3^{n-1}x, 4\cdot 3^{n-1}x) \end{split}$$

for all $a \in A_1^+ \cup \{i\}$ and all $x \in {}_A\mathcal{H}$. So

$$||F(3^{n}ax) - aF(3^{n}x)|| \le ||F(3^{n}ax) - \frac{1}{2}aF(2 \cdot 3^{n-1}x) - \frac{1}{2}aF(4 \cdot 3^{n-1}x)||$$

$$+ ||\frac{1}{2}aF(2 \cdot 3^{n-1}x) + \frac{1}{2}aF(4 \cdot 3^{n-1}x) - aF(3^{n}x)||$$

$$\le \frac{1}{2}\varphi(2 \cdot 3^{n-1}x, 4 \cdot 3^{n-1}x)$$

$$+ \frac{K}{2}\varphi(2 \cdot 3^{n-1}x, 4 \cdot 3^{n-1}x)$$

for all $a \in A_1^+ \cup \{i\}$ and all $x \in {}_A\mathcal{H}$. Thus $3^{-n} \|F(3^n ax) - aF(3^n x)\| \to 0$ as $n \to \infty$ for all $a \in A_1^+ \cup \{i\}$ and all $x \in {}_A\mathcal{H}$. Hence

$$T(ax) = \lim_{n \to \infty} \frac{F(3^n ax)}{3^n} = \lim_{n \to \infty} \frac{aF(3^n x)}{3^n} = aT(x)$$

for each $a \in A_1^+ \cup \{i\}$. So

$$T(ax) = |a|T(\frac{a}{|a|}x) = |a|\frac{a}{|a|}T(x) = aT(x), \ \forall a \in A^+(a \neq 0), \ \forall x \in {}_{A}\mathcal{H},$$
$$T(ix) = iT(x), \ \forall x \in {}_{A}\mathcal{H}.$$

For any element $a \in A$, $a = \frac{a+a^*}{2} + i\frac{a-a^*}{2i}$, and $\frac{a+a^*}{2}$ and $\frac{a-a^*}{2i}$ are self-adjoint elements, furthermore, $a = (\frac{a+a^*}{2})^+ - (\frac{a+a^*}{2})^- + i(\frac{a-a^*}{2i})^+ - i(\frac{a-a^*}{2i})^-$, where $(\frac{a+a^*}{2})^+$, $(\frac{a+a^*}{2})^-$, $(\frac{a-a^*}{2i})^+$, and $(\frac{a-a^*}{2i})^-$ are positive elements (see [2, Lemma 38.8]). So

$$T(ax) = T((\frac{a+a^*}{2})^+ x - (\frac{a+a^*}{2})^- x + i(\frac{a-a^*}{2i})^+ x - i(\frac{a-a^*}{2i})^- x)$$

$$= (\frac{a+a^*}{2})^+ T(x) + (\frac{a+a^*}{2})^- T(-x) + (\frac{a-a^*}{2i})^+ T(ix)$$

$$+ (\frac{a-a^*}{2i})^- T(-ix)$$

$$= (\frac{a+a^*}{2})^+ T(x) - (\frac{a+a^*}{2})^- T(x) + i(\frac{a-a^*}{2i})^+ T(x)$$

$$- i(\frac{a-a^*}{2i})^- T(x)$$

$$= ((\frac{a+a^*}{2})^+ - (\frac{a+a^*}{2})^- + i(\frac{a-a^*}{2i})^+ - i(\frac{a-a^*}{2i})^-)T(x)$$

$$= aT(x)$$

for all $a \in A$ and all $x \in {}_{A}\mathcal{H}$. Hence

$$T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)$$

for all $a, b \in A$ and all $x, y \in {}_{A}\mathcal{H}$. So the unique \mathbb{R} -linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is an A-linear operator.

Since $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is continuous and $\lim_{n\to\infty} 3^{-n}F(3^nx)$ converges uniformly on ${}_{A}\mathcal{H}$, the A-linear operator $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is continuous. Hence the A-linear operator $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is bounded (see [3, Proposition II.1.1]). So there exists a unique bounded A-linear operator $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfying (iv), as desired.

THEOREM 2. Let $F, G : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be mappings for which there exists a function $\varphi : {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ satisfying (iii) such that

$$||2F(\frac{ax + ay}{2}) - aF(x) - aF(y)|| \le \varphi(x, y),$$

 $||2G(\frac{ax + ay}{2}) - aG(x) - aG(y)|| \le \varphi(x, y)$

for all $a \in A_1^+ \cup \{i\}$ and all $x, y \in {}_A\mathcal{H}$. Assume that $F(3^nx) = 3^nF(x)$ and $G(3^nx) = 3^nG(x)$ for all positive integers n and all $x \in {}_A\mathcal{H}$. Then the mappings $F, G : {}_A\mathcal{H} \to {}_A\mathcal{H}$ are bounded A-linear operators. Furthermore,

(1) if the mappings $F, G: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfy the inequalities

$$||F \circ G(x) - x|| \le \varphi(x, x),$$

$$||G \circ F(x) - x|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping G is the inverse of the mapping F,

(2) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequality

$$||F(x) - F^*(x)|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a self-adjoint operator,

(3) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequality

$$||F \circ F^*(x) - F^* \circ F(x)|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a normal operator,

(4) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequalities

$$||F \circ F^*(x) - x|| \le \varphi(x, x),$$

$$||F^* \circ F(x) - x|| \le \varphi(x, x),$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a unitary operator, and

(5) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequalities

$$||F \circ F(x) - F(x)|| \le \varphi(x, x),$$
$$||F^*(x) - F(x)|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a projection.

Proof. By the same method as the proof of Lemma 1, one can show that there exists a unique bounded A-linear operator $L: {}_A\mathcal{H} \to {}_A\mathcal{H}$ such that

$$\|G(x) - L(x)\| \le \frac{1}{3} (\widetilde{\varphi}(x, -x) + \widetilde{\varphi}(-x, 3x))$$

for all $x \in {}_{A}\mathcal{H}$.

By the assumption,

$$T(x) = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = F(x),$$

$$L(x) = \lim_{n \to \infty} \frac{G(3^n x)}{3^n} = G(x)$$

for all $x \in {}_{A}\mathcal{H}$, where the mapping $T : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is given in the proof of Lemma 1. Hence the bounded A-linear operators T and L are the mappings F and G, respectively. So the mappings $F, G : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ are bounded A-linear operators.

(1) By the assumption.

$$||F \circ G(3^n x) - 3^n x|| \le \varphi(3^n x, 3^n x),$$

$$||G \circ F(3^n x) - 3^n x|| \le \varphi(3^n x, 3^n x)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus

$$3^{-n} || F \circ G(3^n x) - 3^n x || \to 0,$$

$$3^{-n} || G \circ F(3^n x) - 3^n x || \to 0$$

as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F \circ G(x) = \lim_{n \to \infty} \frac{F \circ G(3^n x)}{3^n} = x,$$
$$G \circ F(x) = \lim_{n \to \infty} \frac{G \circ F(3^n x)}{3^n} = x$$

for all $x \in {}_{A}\mathcal{H}$. So the mapping G is the inverse of the mapping F.

(2) By the assumption,

$$||F(3^n x) - F^*(3^n x)|| < \varphi(3^n x, 3^n x)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus $3^{-n}||F(3^{n}x) - F^{*}(3^{n}x)|| \to 0$ as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F(x) = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = \lim_{n \to \infty} \frac{F^*(3^n x)}{3^n} = F^*(x)$$

for all $x \in {}_{A}\mathcal{H}$. So the mapping F is a self-adjoint operator.

The proofs of the other items are similar to the proofs of (1) and (2).

From now on, we denote by A_{in} the set of invertible elements in A, and assume that A has real rank 0, which means that the set of invertible self-adjoint elements in A is dense in the set of self-adjoint elements in A (see [1, 4]).

THEOREM 3. Let $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be a mapping for which there exists a function $\varphi: {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ satisfying (iii) such that

$$||2F(\frac{ax+ay}{2}) - aF(x) - aF(y)|| \le \varphi(x,y)$$

for all $a \in (A_{in} \cap A_1^+) \cup \{i\}$ and all $x, y \in {}_{A}\mathcal{H}$. Then there exists a unique bounded A-linear operator $T : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfying (iv).

Proof. By the same reasoning as the proof of Lemma 1, there exists a unique \mathbb{R} -linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfying (iv).

By the same method as the proof of Lemma 1, one can show that

(1)
$$T(ax) = \lim_{n \to \infty} 3^{-n} F(3^n ax) = \lim_{n \to \infty} 3^{-n} a F(3^n x) = a T(x)$$

for all $a \in (A_{in} \cap A_1^+) \cup \{i\}$ and all $x \in {}_A\mathcal{H}$.

Let $b \in A_1^+ \setminus A_{in}$. Since $A_{in} \cap A_{sa}$ is dense in A_{sa} , there exists a sequence $\{b_m\}$ in $A_{in} \cap A_{sa}$ such that $b_m \to b$ as $m \to \infty$, where A_{sa} denotes the set of self-adjoint elements in A. Put $c_m = \frac{1}{|b_m|} b_m$. Then $c_m \to \frac{1}{|b|} b = b$ as $m \to \infty$ and $c_m \in A_{in} \cap A_1$. Put $a_m = \sqrt{c_m * c_m}$. Then $a_m \to \sqrt{b*b} = b$ as $m \to \infty$ and $a_m \in A_{in} \cap A_1^+$. Thus there exists a sequence $\{a_m\}$ in $A_{in} \cap A_1^+$ such that $a_m \to b$ as $m \to \infty$, and so

(2)
$$\lim_{m \to \infty} T(a_m x) = \lim_{m \to \infty} \lim_{n \to \infty} 3^{-n} F(3^n a_m x)$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} 3^{-n} F(3^n a_m x) \text{ by (ii)}$$

$$= \lim_{n \to \infty} (3^{-n} F(3^n \lim_{m \to \infty} a_m x)) \text{ by (i)}$$

$$= \lim_{n \to \infty} 3^{-n} F(3^n bx)$$

$$= T(bx)$$

for all $x \in {}_{A}\mathcal{H}$. By (1),

(3)
$$||T(a_m x) - bT(x)|| = ||a_m T(x) - bT(x)|| \to ||bT(x) - bT(x)|| = 0$$

as $m \to \infty$. By (2),

(4)
$$\|3^{-n}F(3^na_mx) - T(a_mx)\| \to \|3^{-n}F(3^nbx) - T(bx)\|$$

as $m \to \infty$. By (3) and (4),

$$||T(bx) - bT(x)|| \le ||T(bx) - 3^{-n}F(3^{n}bx)|| + ||3^{-n}F(3^{n}bx) - 3^{-n}F(3^{n}a_{m}x)|| + ||3^{-n}F(3^{n}a_{m}x) - T(a_{m}x)|| + ||T(a_{m}x) - bT(x)|| \rightarrow ||T(bx) - 3^{-n}F(3^{n}bx)|| + ||3^{-n}F(3^{n}bx) - T(bx)|| \text{ as } m \to \infty \rightarrow 0 \text{ as } n \to \infty$$

for all $x \in {}_{A}\mathcal{H}$. By (1) and (5),

$$T(ax) = aT(x)$$

for all $a \in A_1^+ \cup \{i\}$ and all $x \in {}_A\mathcal{H}$.

The rest of the proof is similar to the proof of Lemma 1. So the unique \mathbb{R} -linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a bounded A-linear operator satisfying (iv).

Replacing $A_1^+ \cup \{i\}$ in the statement of Theorem 2 by $(A_{in} \cap A_1^+) \cup \{i\}$, one can obtain the same results as Theorem 2, under the assumption that A has real rank 0.

REFERENCES

- 1. B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of noncommutative tori, K-Theory 6 (1992), 267-284.
- F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.

- 3. J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1985.
- 4. K.R. Davidson, C*-Algebras by Example, Fields Institute Monographs, vol. 6, Amer. Math. Soc., Providence, R.I., 1996.
- 5. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- 6. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Berlin, Basel and Boston, 1998.
- 7. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
- 8. P.S. Muhly and B. Solel, *Hilbert modules over operator algebras*, Memoirs Amer. Math. Soc. 117 No. 559 (1995), 1-53.
- 9. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Deok-Hoon Boo Department of Mathematics Chungnam National University Taejon 305-764, Korea

E-mail: dhboo@math.cnu.ac.kr

**

Won-Gil Park
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea

E-mail: wgpark@math.cnu.ac.kr