• 제목/요약/키워드: generalized Euler polynomials

검색결과 24건 처리시간 0.026초

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.133-144
    • /
    • 2020
  • In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.

A NEW CLASS OF GENERALIZED APOSTOL-TYPE FROBENIUS-EULER-HERMITE POLYNOMIALS

  • Pathan, M.A.;Khan, Waseem A.
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.477-499
    • /
    • 2020
  • In this paper, we introduce a new class of generalized Apostol-type Frobenius-Euler-Hermite polynomials and derive some explicit and implicit summation formulae and symmetric identities by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Frobenius-Euler type polynomials and Hermite-based Apostol-Euler and Apostol-Genocchi polynomials studied by Pathan and Khan, Kurt and Simsek.

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

ON THE SYMMETRY PROPERTIES OF THE GENERALIZED HIGHER-ORDER EULER POLYNOMIALS

  • Bayad, Abdelmejid;Kim, Tae-Kyun;Choi, Jong-Sung;Kim, Young-Hee;Lee, Byung-Je
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.511-516
    • /
    • 2011
  • In this paper we prove a generalized symmetry relation between the generalized Euler polynomials and the generalized higher-order (attached to Dirichlet character) Euler polynomials. Indeed, we prove a relation between the power sum polynomials and the generalized higher-order Euler polynomials..

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

CALCULATING ZEROS OF THE GENERALIZED GENOCCHI POLYNOMIALS

  • Agarwal, R.P.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.453-462
    • /
    • 2009
  • Kim [4] defined the generalized Genocchi numbers $G_{n,x}$. In this paper, we introduce the generalized Genocchi polynomials $G_{n,x}(x)$. One purpose of this paper is to investigate the zeros of the generalized Genocchi polynomials $G_{n,x}(x)$. We also display the shape of generalized Genocchi polynomials $G_{n,x}(x)$.

  • PDF

SYMMETRY PROPERTIES FOR A UNIFIED CLASS OF POLYNOMIALS ATTACHED TO χ

  • Gaboury, S.;Tremblay, R.;Fugere, J.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.119-130
    • /
    • 2013
  • In this paper, we obtain some generalized symmetry identities involving a unified class of polynomials related to the generalized Bernoulli, Euler and Genocchi polynomials of higher-order attached to a Dirichlet character. In particular, we prove a relation between a generalized X version of the power sum polynomials and this unified class of polynomials.