• 제목/요약/키워드: generalized Dixon's theorem

검색결과 16건 처리시간 0.016초

APPLICATIONS OF GENERALIZED KUMMER'S SUMMATION THEOREM FOR THE SERIES 2F1

  • Kim, Yong-Sup;Rathie, Arjun K.
    • Bulletin of the Korean Mathematical Society
    • /
    • 제46권6호
    • /
    • pp.1201-1211
    • /
    • 2009
  • The aim of this research paper is to establish generalizations of classical Dixon's theorem for the series $_3F_2$, a result due to Bailey involving product of generalized hypergeometric series and certain very interesting summations due to Ramanujan. The results are derived with the help of generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Lavoie, Grondin, and Rathie.

ALTERNATIVE DERIVATIONS OF CERTAIN SUMMATION FORMULAS CONTIGUOUS TO DIXON'S SUMMATION THEOREM FOR A HYPERGEOMETRIC $_3F_2$ SERIES

  • Choi, June-Sang;Rathie Arjun K.;Malani Shaloo;Mathur Rachana
    • The Pure and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.255-259
    • /
    • 2006
  • In 1994, Lavoie et al. have obtained twenty tree interesting results closely related to the classical Dixon's theorem on the sum of a $_3F_2$ by making a systematic use of some known relations among contiguous functions. We aim at showing that these results can be derived by using the same technique developed by Bailey with the help of Gauss's summation theorem and generalized Kummer's theorem obtained by Lavoie et al..

  • PDF

AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON

  • Lee, Seung-Woo;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • 제32권1호
    • /
    • pp.61-71
    • /
    • 2010
  • The aim of this paper is to extend a number of transformation formulas for the four $X_4$, $X_5$, $X_7$, and $X_8$ among twenty triple hypergeometric series $X_1$ to $X_{20}$ introduced earlier by Exton. The results are derived from the generalized Kummer's theorem and Dixon's theorem obtained earlier by Lavoie et al..

Generalizations of Dixon's and Whipple's Theorems on the Sum of a 3F2

  • Choi, Junesang;Malani, Shaloo;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.449-454
    • /
    • 2007
  • InIn this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a $_3F_2$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

  • PDF

ANOTHER PROOF OF CLASSICAL DIXON'S SUMMATION THEOREM FOR THE SERIES 3F2

  • Kim, Insuk;Cho, Myunghyun
    • Honam Mathematical Journal
    • /
    • 제41권3호
    • /
    • pp.661-666
    • /
    • 2019
  • In this short research note, we aim to provide a new proof of classical Dixon's summation theorem for the series $_3F_2$ with unit argument. The theorem is obtained by evaluating an infinite integral and making use of classical Gauss's and Kummer's summation theorem for the series $_2F_1$.

SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES HC

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • 제25권2호
    • /
    • pp.185-191
    • /
    • 2010
  • Srivastava noticed the existence of three additional complete triple hypergeometric functions $H_A$, $H_B$ and $H_C$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables. In 2004, Rathie and Kim obtained four summation formulas containing a large number of very interesting reducible cases of Srivastava's triple hypergeometric series $H_A$ and $H_C$. Here we are also aiming at presenting two unified summation formulas (actually, including 62 ones) for some reducible cases of Srivastava's $H_C$ with the help of generalized Dixon's theorem and generalized Whipple's theorem on the sum of a $_3F_2$ obtained earlier by Lavoie et al.. Some special cases of our results are also considered.

CERTAIN SUMMATION FORMULAS DUE TO RAMANUJAN AND THEIR GENERALIZATIONS

  • RATHIE ARJUN K.;MALANI SHALOO;MATHUR RACHANA;CHOI JUNESANG
    • Bulletin of the Korean Mathematical Society
    • /
    • 제42권3호
    • /
    • pp.469-475
    • /
    • 2005
  • The authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan. The results are derived with the help of generalized Dixon's theorem obtained earlier by Lavoie, Grondin, Rathie, and Arora.

GENERALIZATIONS OF CERTAIN SUMMATION FORMULA DUE TO RAMANUJAN

  • Song, Hyeong-Kee;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • 제34권1호
    • /
    • pp.35-44
    • /
    • 2012
  • Motivated by the extension of classical Dixon's summation theorem for the series $_3F_2$ given by Lavoie, Grondin, Rathie and Arora, the authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan.

ANOTHER GENERALIZATION OF A RAMANUJAN SUMMATION

  • Lee, Seung Woo;Lee, Chang Hyun;Kim, Yong Sup
    • Honam Mathematical Journal
    • /
    • 제35권1호
    • /
    • pp.83-92
    • /
    • 2013
  • The aim of this research paper is to provide certain generalizations of two well-known summations due to Ramanujan. The results are derived with the help of the generalized Dixon's theorem on the sum of $_3F_2$ and the generalized Kummer's theorem for $_2F_1$ obtained earlier by Lavoie et al. [3, 5]. As their special cases, we have obtained fifteen interesting summations which are closely related to Ramanujan's summation.

SOME PRODUCT FORMULAS OF THE GENERALIZED HYPERGEOMETRIC SERIES

  • Cho, Young-Joon;Seo, Tae-Young;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • 제14권4호
    • /
    • pp.843-850
    • /
    • 1999
  • The object of this paper is to give certain classes of pre-sumably new product formulas involving the generalized hypergeo-metric series by modifying the elementary method suggested by Bai-ley.

  • PDF