Generalizations of Dixon's and Whipple's Theorems on the Sum of a ${ }_{3} F_{2}$

Junesang Choi

Department of Mathematics, Dongguk University, Kyongju 780-714, Korea.
e-mail: junesang@mail.dongguk.ac.kr
Shaloo Malani
Department of Mathematics, Dungar College, Bikaner-334 001, Rajasthan State, India.
e-mail: shaloo_malani@yahoo.com
Arjun K. Rathie
Department of Mathematics, Govt. P. G. College, Sujangarh Distt. Churu, Rajasthan State, India.
e-mail: akrathie@rediffmail.com
Abstract. In this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a ${ }_{3} F_{2}$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

1. Introduction and preliminaries

In 1943, Mitra [6] generalized the classical Watson's theorem [1] on the sum of a ${ }_{3} F_{2}$:

$$
\begin{align*}
& { }_{3} F_{2}\left(\left.\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & c
\end{array} \right\rvert\, 1\right) \tag{1.1}\\
= & \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} a-\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} b+\frac{1}{2}\right)} \\
& (\Re(2 c-a-b)>-1)
\end{align*}
$$

Received March 21, 2006.
2000 Mathematics Subject Classification: 33C65, 33C60, 33C70, 33C05.
Key words and phrases: generalized hypergeometric series ${ }_{p} F_{q}$, Dixon's summation formula for ${ }_{3} F_{2}$, Whipple's summation theorem for ${ }_{3} F_{2}$.
in the form

$$
\begin{align*}
& { }_{3} F_{2}\left(\begin{array}{cc}
a, b, & c \\
\frac{1}{2}(a+b+1), & \delta^{\prime}
\end{array}\right) \tag{1.2}\\
= & \frac{2^{a+b-2} \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} a-\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma(a) \Gamma(b)} \\
& \left\{\frac{\Gamma\left(c+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a\right) \Gamma\left(\frac{1}{2} b\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} b+\frac{1}{2}\right)} \mathcal{A}(a, b, c, \delta)\right. \\
& \left.+\frac{2 c-\delta}{\delta} \frac{\Gamma\left(c+\frac{3}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}\right) \Gamma\left(c-\frac{1}{2} a+1\right) \Gamma\left(c-\frac{1}{2} b+1\right)} \mathcal{B}(a, b, c, \delta)\right\} \\
& (\Re(2 \delta-2 c-a-b)>-1),
\end{align*}
$$

where, for convenience,

$$
\begin{aligned}
& \mathcal{A}(a, b, c, \delta) \\
& :={ }_{7} F_{6}\binom{c-\frac{1}{2}, \frac{1}{2} c+\frac{3}{4}, c, c-\frac{1}{2} \delta, c-\frac{1}{2} \delta+\frac{1}{2}, \frac{1}{2} a, \frac{1}{2} b}{\frac{1}{2} c-\frac{1}{4}, \frac{1}{2}, \frac{1}{2} \delta+\frac{1}{2}, \frac{1}{2} \delta, c-\frac{1}{2} a+\frac{1}{2}, c-\frac{1}{2} b+\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{B}(a, b, c, \delta) \\
&:={ }_{7} F_{6}\left(\left.\begin{array}{c}
c+\frac{1}{2}, \frac{1}{2} c+\frac{5}{4}, c, c-\frac{1}{2} \delta+\frac{1}{2}, c-\frac{1}{2} \delta+1, \frac{1}{2} a+\frac{1}{2}, \frac{1}{2} b+\frac{1}{2} \\
\frac{1}{2} c+\frac{1}{4}, \frac{3}{2}, \frac{1}{2} \delta+1, \frac{1}{2} \delta+\frac{1}{2}, c-\frac{1}{2} a+1, c-\frac{1}{2} b+1
\end{array} \right\rvert\,\right) .
\end{aligned}
$$

For $\delta=2 c$, we get the Watson's theorem (1.1). For another generalization of the Watson's theorem (1.1), see [3].

We, for easy reference, record here a fundamental transformation formula [1]:

$$
\begin{align*}
& { }_{3} F_{2}\left(\begin{array}{lll}
a, & b, & c \mid \\
e, & f & \mid
\end{array}\right) \tag{1.3}\\
& =\frac{\Gamma(e) \Gamma(f) \Gamma(s)}{\Gamma(a) \Gamma(s+b) \Gamma(s+c)}{ }_{3} F_{2}\left(\left.\begin{array}{ccc}
e-a, & f-a, & s \\
s+b, & s+c
\end{array} \right\rvert\, \begin{array}{l}
1
\end{array}\right) \\
& (s=e+f-a-b-c ; \Re(s)>0) \text {. }
\end{align*}
$$

Recently Choi, Rathie and Malani [2] obtained an interesting result for a special summation formula for ${ }_{6} F_{5}$, but here we shall use their result in a slightly different equivalent form:
(1.4) $\left.{ }_{7} F_{6}\left(\begin{array}{cccccc}c-\frac{1}{2}, & \frac{1}{2} c+\frac{3}{4}, & c, & 1, & \frac{3}{2}, & \frac{1}{2} a, \\ \frac{1}{2} c-\frac{1}{4}, & \frac{1}{2}, & c-\frac{1}{2}, & c-1, & c-\frac{1}{2} a+\frac{1}{2}, & c-\frac{1}{2} b+\frac{1}{2}\end{array}\right) 1\right)$
$=\frac{\alpha(2 c-a-1)(2 c-b-1)}{(2 c-a-b-3)(2 c-a-b-1)(2 c-1)(c-1)}$,
where $\alpha=2 c^{2}-(a+b+5) c+(a+1)(b+1)+2$.
The aim of the paper is to obtain generalizations of the classical Dixon's and Whipple's theorems.

2. Generalizations of Dixon's theorem

In this section we establish generalizations of Dixon's theorem in the following form:

$$
\begin{align*}
& { }_{3} F_{2}\left(\begin{array}{cc}
A, & B, \\
1+A-B, & C \\
1+A-C+j & 1
\end{array}\right) \tag{2.1}\\
& =\frac{2^{2 A-2 B-4 C+2 j+1} \Gamma(1+A-B) \Gamma(1+A-C+j) \Gamma(C-j)}{\Gamma(C) \Gamma(1+A-2 C+j) \Gamma(2+2 A-2 B-2 C+j)} \\
& \left\{\begin{array}{l}
\Gamma\left(\frac{3}{2}+A-B-C\right) \Gamma\left(1+\frac{1}{2} A-B-C+\frac{1}{2} j\right) \Gamma\left(\frac{1}{2}+\frac{1}{2} A-C+\frac{1}{2} j\right) \\
\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}+\frac{1}{2} A-\frac{1}{2} j\right) \Gamma\left(1+\frac{1}{2} A-B-\frac{1}{2} j\right) \\
C
\end{array}(A, B, C, j)\right. \\
& -\frac{j}{2+2 A-2 B-2 C+j} \frac{\Gamma\left(\frac{5}{2}+A-B-C\right) \Gamma\left(\frac{3}{2}+\frac{1}{2} A-B-C+\frac{1}{2} j\right) \Gamma\left(1+\frac{1}{2} A-C+\frac{1}{2} j\right)}{\Gamma\left(\frac{3}{2}\right) \Gamma\left(1+\frac{1}{2} A-\frac{1}{2} j\right) \Gamma\left(\frac{3}{2}+\frac{1}{2} A-B-\frac{1}{2} j\right)} \\
& \cdot \mathcal{D}(A, B, C, j)\} \quad(\Re(A-2 B-2 C+j)>-2),
\end{align*}
$$

where, for convenience,

$$
\mathcal{C}(A, B, C, j):={ }_{7} F_{6}\binom{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}}{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}},
$$

where

$$
\begin{aligned}
& A_{1}=\frac{1}{2}+A-B-C, \quad A_{2}=\frac{5}{4}+\frac{1}{2} A-\frac{1}{2} B-\frac{1}{2} C \\
& A_{3}=1+A-B-C, \quad A_{4}=-\frac{1}{2} j, \quad A_{5}=-\frac{1}{2} j+\frac{1}{2}
\end{aligned}
$$

$$
\begin{gathered}
A_{6}=1+\frac{1}{2} A-B-C+\frac{1}{2} j, \quad A_{7}=\frac{1}{2}+\frac{1}{2} A-C+\frac{1}{2} j, \\
B_{1}=\frac{1}{4}+\frac{1}{2} A-\frac{1}{2} B-\frac{1}{2} C, \quad B_{2}=\frac{1}{2}, \quad B_{3}=\frac{3}{2}+A-B-C+\frac{1}{2} j, \\
B_{4}=1+A-B-C+\frac{1}{2} j, \quad B_{5}=\frac{1}{2} A-\frac{1}{2} j+\frac{1}{2}, \\
B_{6}=1+\frac{1}{2} A-B-\frac{1}{2} j
\end{gathered}
$$

and

$$
\mathcal{D}(A, B, C, j):={ }_{7} F_{6}\left(\left.\begin{array}{c}
C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7} \\
D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}
\end{array} \right\rvert\, 1\right)
$$

where

$$
\begin{gathered}
C_{1}=\frac{3}{2}+A-B-C, \quad C_{2}=\frac{7}{4}+\frac{1}{2} A-\frac{1}{2} B-\frac{1}{2} C, \\
C_{3}=1+A-B-C, \quad C_{4}=-\frac{1}{2} j+\frac{1}{2}, \quad C_{5}=-\frac{1}{2} j+1, \\
C_{6}=\frac{3}{2}+\frac{1}{2} A-B-C+\frac{1}{2} j, \quad C_{7}=1+\frac{1}{2} A-C+\frac{1}{2} j, \\
D_{1}=\frac{3}{4}+\frac{1}{2} A-\frac{1}{2} B-\frac{1}{2} C, \quad D_{2}=\frac{3}{2}, \quad D_{3}=2+A-B-C+\frac{1}{2} j, \\
D_{4}=\frac{3}{2}+A-B-C+\frac{1}{2} j, \quad D_{5}=1+\frac{1}{2} A-\frac{1}{2} j, \\
D_{6}=\frac{3}{2}+\frac{1}{2} A-B-\frac{1}{2} j .
\end{gathered}
$$

To verify (2.1), consider the transformation (1.3) in the form:

$$
\begin{align*}
& { }_{3} F_{2}\left(\begin{array}{cc}
e-a, & f-b, \\
s+b, & s \\
s+c & 1
\end{array}\right) \tag{2.2}\\
& =\frac{\Gamma(a) \Gamma(s+b) \Gamma(s+c)}{\Gamma(e) \Gamma(f) \Gamma(s)}{ }_{3} F_{2}\left(\left.\begin{array}{cc}
a, & b, \\
e, & c
\end{array} \right\rvert\, 1\right) \\
& \quad(s=e+f-a-b-c ; \Re(s)>0) .
\end{align*}
$$

If we set $e-a=A, f-a=B, s=C, s+b=1+A-C+j$ and $s+c=1+A-B$, and can use Mitra's theorem (1.2) to sum the series on the right hand side of the resulting transformation, after a little simplification, we arrive at the desired generalizations of Dixon's theorem (2.1).

If we take $j=0$ in (2.1), we get, after a little simplification, the theorem due to Dixon [1].

If we take $j= \pm 1, \pm 2$ in (2.1), we get the known results due to Lavoie, Grondin, Rathie and Arora [5]. However it should be remarked in passing that in the case of $j=2$, the resulting involved ${ }_{7} F_{6}$ has -1 in the numerator, so it gets terminated. Thus, this case of $j=2$ is also seen to be equivalent to a result given by Lavoie,

Grondin, Rathie and Arora [5]. Similarly, there remain ${ }_{5} F_{4}$ and ${ }_{7} F_{6}$ in the case of $j=-2$. Applying a known result to ${ }_{5} F_{4}$ and (1.4) to ${ }_{7} F_{6}$, after a little simplification, the resulting equation of the case of $j=-2$ is seen to be equivalent to a result given by Lavoie, Grondin, Rathie and Arora [5]. Other results can also be seen to equivalent to their corresponding ones due to Lavoie, Grondin, Rathie and Arora [5].

3. Generalizations of Whipple's theorem

In this section we shall establish the following generalizations of Whipple's Theorem:

$$
\begin{align*}
& { }_{3} F_{2}\left(\begin{array}{ccc}
a, & b, & c \\
& e, & f
\end{array}\right)=\frac{2^{2 c-2 a-1} \Gamma(e) \Gamma(a-j) \Gamma(c-j) \Gamma(2 c-e+1)}{\Gamma(a) \Gamma(e-a) \Gamma(2 c-j) \Gamma(2 c-e-a+1)} \tag{3.1}\\
& \left\{\begin{array}{l}
\Gamma\left(\frac{1}{2} e-\frac{1}{2} a\right) \Gamma\left(c-\frac{1}{2} e-\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(c-j+\frac{1}{2}\right) \\
\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2} e+\frac{1}{2} a-j\right) \Gamma\left(c-\frac{1}{2} e+\frac{1}{2} a+\frac{1}{2}-j\right)
\end{array}\right. \\
& { }_{7} F_{6}\left(\left.\begin{array}{c}
E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}, E_{7} \\
F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}
\end{array} \right\rvert\,\right) \\
& -\frac{j}{2 c-j} \frac{\Gamma\left(c-j+\frac{3}{2}\right) \Gamma\left(\frac{1}{2} e-\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} e-\frac{1}{2} a+1\right)}{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2} e+\frac{1}{2} a+\frac{1}{2}-j\right) \Gamma\left(c-\frac{1}{2} e+\frac{1}{2} a+1-j\right)} \\
& \left.{ }_{7} F_{6}\binom{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}}{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}}\right\} \\
& (e+f=2 c+1 ; a+b=1+j ; \Re(c-j)>0),
\end{align*}
$$

where

$$
\begin{gathered}
E_{1}=c-j-\frac{1}{2}, \quad E_{2}=\frac{1}{2} c-\frac{1}{2} j+\frac{3}{4}, \quad E_{3}=c-j, \quad E_{4}=-\frac{1}{2} j, \\
E_{5}=-\frac{1}{2} j+\frac{1}{2}, \quad E_{6}=\frac{1}{2} e-\frac{1}{2} a, \quad E_{7}=c-\frac{1}{2} e-\frac{1}{2} a+\frac{1}{2} \\
F_{1}=\frac{1}{2} c-\frac{1}{2} j-\frac{1}{4}, \quad F_{2}=\frac{1}{2}, \quad F_{3}=c-\frac{1}{2} j+\frac{1}{2}, \quad F_{4}=c-\frac{1}{2} j, \\
F_{5}=c-\frac{1}{2} e+\frac{1}{2} a+\frac{1}{2}-j, \quad F_{6}=\frac{1}{2} e+\frac{1}{2} a-j
\end{gathered}
$$

and

$$
\begin{gathered}
G_{1}=c-j+\frac{1}{2}, \quad G_{2}=\frac{1}{2} c-\frac{1}{2} j+\frac{5}{4}, \quad G_{3}=c-j, \quad G_{4}=-\frac{1}{2} j+\frac{1}{2}, \\
G_{5}=-\frac{1}{2} j+1, \quad G_{6}=\frac{1}{2} e-\frac{1}{2} a+\frac{1}{2}, \quad G_{7}=c-\frac{1}{2} e-\frac{1}{2} a+1
\end{gathered}
$$

$$
\begin{gathered}
H_{1}=\frac{1}{2} c-\frac{1}{2} j+\frac{1}{4}, \quad H_{2}=\frac{3}{2}, \quad H_{3}=c-\frac{1}{2} j+1, \quad H_{4}=c-\frac{1}{2} j+\frac{1}{2} \\
H_{5}=c-\frac{1}{2} e+\frac{1}{2} a+1-j, \quad H_{6}=\frac{1}{2} e+\frac{1}{2} a+\frac{1}{2}-j
\end{gathered}
$$

If we set $a+b=1+j, e+f=2 c+1$ in (1.3), and can use Mitra's theorem (1.2) to sum the series on the right hand side of the resulting transformation, after a little simplification, we arrive at the desired generalizations of Whipple's theorem (3.1).

If we take $j=0$ in (3.1), we get, after a little simplification, the theorem due to Whipple [1].

If we take $j= \pm 1, \pm 2$ in (3.1), we get the known results due to Lavoie, Grondin, Rathie [4]. However it should be remarked in passing that in the case of $j=2$, the resulting involved ${ }_{7} F_{6}$ has -1 in the numerator, so it gets terminated. Thus, this case of $j=2$ is also seen to be equivalent to a result given by Lavoie, Grondin, Rathie [4]. Similarly, there remain ${ }_{5} F_{4}$ and ${ }_{7} F_{6}$ in the case of $j=-2$. Applying a known result to ${ }_{5} F_{4}$ and (1.4) to ${ }_{7} F_{6}$, after a little simplification, the resulting equation of the case of $j=-2$ is seen to be equivalent to a result given by Lavoie, Grondin, Rathie [4]. Other results can also be seen to be equivalent to their corresponding ones due to Lavoie, Grondin, Rathie [4].

References

[1] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, (1935).
[2] J. Choi, A. K. Rathie and S. Malani, A Summation Formula of ${ }_{6} F_{5}(1)$, Comm. Korean Math. Soc., 19(2004), 775-778.
[3] J. L. Lavoie, F. Grondin and A. K. Rathie, Generalizations of Watson's theorem on the sum of $a_{3} F_{2}$, Indian J. Math., 34(1992), 23-32.
[4] J. L. Lavoie, F. Grondin and A. K. Rathie, Generalizations of Whipple's theorem on the sum of $a_{3} F_{2}$, J. Comput. Appl. Math., 72(1996), 293-300.
[5] J. L. Lavoie, F. Grondin, A. K. Rathie and K. Arora, Generalizations of Dixon's theorem on the sum of $a_{3} F_{2}$, Math. Comput., 49(1987), 269-274.
[6] S. C. Mitra, J. Indian Math. Soc., $7(3)(1943)$, 102-110.

