• Title/Summary/Keyword: gate-stack

Search Result 66, Processing Time 0.042 seconds

Analytical Modeling and Simulation for Dual Metal Gate Stack Architecture (DMGSA) Cylindrical/Surrounded Gate MOSFET

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.458-466
    • /
    • 2012
  • A Dual metal gate stack cylindrical/ surrounded gate MOSFET (DMGSA CGT/SGT MOSFET) has been proposed and an analytical model has been developed to examine the impact of this structure in suppressing short channel effects and in enhancing the device performance. It is demonstrated that incorporation of gate stack along with dual metal gate architecture results in improvement in short channel immunity. It is also examined that for DMGSA CGT/SGT the minimum surface potential in the channel reduces, resulting increase in electron velocity and thereby improving the carrier transport efficiency. Furthermore, the device has been analyzed at different bias point for both single material gate stack architecture (SMGSA) and dual material gate stack architecture (DMGSA) and found that DMGSA has superior characteristics as compared to SMGSA devices. The analytical results obtained from the proposed model agree well with the simulated results obtained from 3D ATLAS Device simulator.

Review of alternative gate stack technology research during the last decade

  • Lee, Byoung-Hun;Kirsch, Paul;Alshareef, Husam;Majhi, Prashant;Choi, Rino;Song, Seung-Chul;Tseng, Hsing Huang;Jammy, Raj
    • Ceramist
    • /
    • v.9 no.4
    • /
    • pp.58-71
    • /
    • 2006
  • Scaling of the gate stack has been one of the major contributors to the performance enhancement of CMOSFET devices in past technology generations. The scalability of gate stack has diminished in recent years and alternative gate stack technology such as metal electrode and high-k dielectrics has been intensively studied during the last decade. Tody the performance of high-k dielectrics almost matches that of conventional $SiO_2-based$ gate dielectrics. However, many technical challenges remain to be resolved before alternative gate stacks can be introduced into mainstream technology. This paper reviews the research in alternative gate stack technologies to provide insights for future research.

  • PDF

EPD time delay in etching of stack down WSix gate in DPS+ poly chamber

  • Ko, Yong Deuk;Chun, Hui-Gon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.130-136
    • /
    • 2002
  • Device makers want to make higher density chips as devices shrink, especially WSix poly stack down is one of the key issues. However, EPD (End Point Detection) time delay was happened in DPS+ poly chamber which is a barrier to achieve device shrink because EPD time delay killed test pattern and next generation device. To investigate the EPD time delay, a test was done with patterned wafers. This experimental was carried out combined with OES(Optical Emission Spectroscopy) and SEM (Scanning Electron Microscopy). OES was used to find corrected wavelength in WSix stack down gate etching. SEM was used to confirm WSix gate profile and gate oxide damage. Through the experiment, a new wavelength (252nm) line of plasma is selected for DPS+ chamber to call correct EPD in WSix stack down gate etching for current device and next generation device.

  • PDF

gate stack구조를 이용한 LTPS TFT의 전기적 특성 분석

  • Jeon, Byeong-Gi;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.59-59
    • /
    • 2009
  • The efficiency of CMOS technology has been developed in uniform rate. However, there was a limitation of reducing the thickness of Gate-oxide since the thickness of Gate Dielectric is also reduced so an amount of leakage current is grow. In order to solve this problem, the semiconductor device which has a dual gate is used widely. This paper presents a method and a necessity for making the Gate Stack of TFT. Before Using test devices to measure values, stacking $SiN_x$ on a wafer test was conducted.

  • PDF

Optimization of Gate Stack MOSFETs with Quantization Effects

  • Mangla, Tina;Sehgal, Amit;Saxena, Manoj;Haldar, Subhasis;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.228-239
    • /
    • 2004
  • In this paper, an analytical model accounting for the quantum effects in MOSFETs has been developed to study the behaviour of $high-{\kappa}$ dielectrics and to calculate the threshold voltage of the device considering two dielectrics gate stack. The effect of variation in gate stack thickness and permittivity on surface potential, inversion layer charge density, threshold voltage, and $I_D-V_D$ characteristics have also been studied. This work aims at presenting a relation between the physical gate dielectric thickness, dielectric constant and substrate doping concentration to achieve targeted threshold voltage, together with minimizing the effect of gate tunneling current. The results so obtained are compared with the available simulated data and the other models available in the literature and show good agreement.

Analytical Model of Double Gate MOSFET for High Sensitivity Low Power Photosensor

  • Gautam, Rajni;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.500-510
    • /
    • 2013
  • In this paper, a high-sensitivity low power photodetector using double gate (DG) MOSFET is proposed for the first time using change in subthreshold current under illumination as the sensitivity parameter. An analytical model for optically controlled double gate (DG) MOSFET under illumination is developed to demonstrate that it can be used as high sensitivity photodetector and simulation results are used to validate the analytical results. Sensitivity of the device is compared with conventional bulk MOSFET and results show that DG MOSFET has higher sensitivity over bulk MOSFET due to much lower dark current obtained in DG MOSFET because of its effective gate control. Impact of the silicon film thickness and gate stack engineering is also studied on sensitivity.

A Study for Stable End Point Detection in 90 nm WSix/poly-Si Stack-down Gate Etching Process (90 nm급 텅스텐 폴리사이드 게이트 식각공정에서 식각종말점의 안정화에 관한 연구)

  • Ko, Yong-Deuk;Chun, Hui-Gon;Lee, Jing-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • The device makers want to make higher density chips on the wafer through scale-down. The change of WSix/poly-Si gate film thickness is one of the key issues under 100 nm device structure. As a new device etching process is applied, end point detection(EPD) time delay was occurred in DPS+ poly chamber of Applied Materials. This is a barrier of device shrink because EPD time delay made physical damage on the surface of gate oxide. To investigate the EPD time delay, the experimental test combined with OES(Optical Emission Spectroscopy) and SEM(Scanning Electron Microscopy) was performed using patterned wafers. As a result, a EPD delay time is reduced by a new chamber seasoning and a new wavelength line through plasma scan. Applying a new wavelength of 252 nm makes it successful to call corrected EPD in WSix/poly-Si stack-down gate etching in the DPS+ poly chamber for the current and next generation devices.

multi-stack gate dielectric 구조를 통한 LTPS TFT 특성

  • Baek, Gyeong-Hyeon;Jeong, Seong-Uk;Jang, Gyeong-Su;Park, Hyeong-Sik;Lee, Won-Baek;Yu, Gyeong-Yeol;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.200-200
    • /
    • 2010
  • 이 논문에서는 field-effect mobility를 향상시키기 위해 triple-layer (SiNx/SiO2/SiOxNy stack 구조)를 gate dielectric material 로 LTPS TFTs에 적용하였다. 이는 플라즈마 처리 기법과 적층구조의 효과적인 in-situ 공정을 이용하여 interface trap과 mobile charge를 낮추어 높은 이동도의 결과를 생각하고 실험하였다. 실험은 SiO2 gatedielectric과 triple-gate dielectric의 C-V curve를 1 MHz의 주파수에서 측정하였다. 또한 Transfer characteristics를 single SiO2 gatedielectric과 triple-gate dielectric of SiNx/SiO2/SiOxNy를 STA 장비를 이용해 측정하였다. 위의 측정을 통해 threshold voltage, mobility, subtheshold swing, driving current, ON/OFF current ratio를 비교 분석하였다.

  • PDF